
Conditional
Language Modeling

Chris Dyer

A language model assigns probabilities to sequences of  
words, .w = (w1, w2, . . . , w`)

p(w) = p(w1)⇥ p(w2 | w1)⇥ p(w3 | w1, w2)⇥ · · ·⇥
p(w` | w1, . . . , w`�1)

=

|w|Y

t=1

p(wt | w1, . . . , wt�1)

It is convenient to decompose this probability using the  
chain rule, as follows:

This reduces the language modeling problem to modeling  
the probability of the next word, given the history of  
preceding words.

Unconditional LMs

Evaluating unconditional LMs
How good is our unconditional language model?
1. Held-out per-word cross entropy or perplexity  
 
 
 
 
 
Same as training criterion. How uncertain is the model  
at each time position, an average?  

2. Task-based evaluation  
Use in a task-model that uses a language model in place  
of some other language model. Does it improve?

ppl = b�
1

|w|
P|w|

i=1 logb p(wi|w<i)

H = � 1

|w|

|w|X

i=1

log2 p(wi | w<i) (units: bits per word)

(units: uncertainty 
 per word)

History-based LMs

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

A common strategy is to make a Markov assumption, 
which is a conditional independence assumption.

History-based LMs

Markov: forget the distant past.  
 Is this valid for language? No…  
 Is it practical? Often!

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

A common strategy is to make a Markov assumption, 
which is a conditional independence assumption.

History-based LMs

Markov: forget the distant past.  
 Is this valid for language? No…  
 Is it practical? Often!

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

A common strategy is to make a Markov assumption, 
which is a conditional independence assumption.

Why RNNs are great for language: no more  
Markov assumptions!

History-based LMs with RNNs

h2h1

h0

h3 h4

softmax

w1 w2 w3 w4

w4w3w2w1

p(W5|w1,w2,w3,w4)z }| {

vector 
(word embedding)

observed 
context word

random variable

RNN hidden state vector, length=|vocab|

History-based LMs with RNNs

h2h1

h0

h3 h4

softmax

w1 w2 w3 w4

w4w3w2w1

p(W5|w1,w2,w3,w4)z }| {

vector 
(word embedding)

observed 
context word

random variable

RNN hidden state vector, length=|vocab|

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

Distributions over words
Each dimension corresponds to a word  
in a closed vocabulary, V.

The pi’s form a distribution, i.e.
pi > 0 8i,

X

i

pi = 1

Bridle. (1990) Probabilistic interpretation of feedforward classification…

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

Distributions over words

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

Distributions over words

 istories are sequences of words…h

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of ?b

Distributions over words

 istories are sequences of words…h

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of ?

Distributions over words

 istories are sequences of words…h

p(w) = p(w1)⇥
p(w2 | w1)⇥
p(w3 | w1, w2)⇥
p(w4 | w1, w2, w3)⇥
. . .

W

RNN language models

h1

h0 x1

<s>

RNN language models

softmax

p̂1

h1

h0 x1

<s>

RNN language models

softmax

p̂1

h1

h0 x1

<s>

⇠

tom

p(tom | hsi)

RNN language models

softmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

⇠
likes

⇥p(likes | hsi, tom)

RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

⇠
likes

⇥p(likes | hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | hsi, tom, likes)

RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

⇠
likes

⇥p(likes | hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | hsi, tom, likes)

x4

h4

softmax

⇠

</s>

⇥p(h/si | hsi, tom, likes, beer)

RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom
⇠

likes

x3

h3

softmax

⇠

beer

x4

h4

softmax

⇠

</s>

Training RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4

Training RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4{log
 lo

ss/
 

cro
ss

en
tro

py

Training RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4

F

{log
 lo

ss/
 

cro
ss

en
tro

py

Training RNN language models

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4

F

{log
 lo

ss/
 

cro
ss

en
tro

py

Training RNN language models

Training RNN language models
The cross-entropy objective seeks the maximum 
likelihood (MLE) objective.

“Find the parameters that make the training data most  
likely.”

Training RNN language models
The cross-entropy objective seeks the maximum 
likelihood (MLE) objective.

“Find the parameters that make the training data most  
likely.”

You will overfit.
1. Stop training early, based on a validation set
2. Weight decay / other regularizers
3. “Dropout” during training.

In contrast to count-based models, zeroes aren’t a problem.

• Unlike Markov (n-gram) models, RNNs never forget

• However, they don’t always remember so well (recall
Felix’s lectures on RNNs vs. LSTMs)

• Algorithms

• Sample a sequence from the probability distribution
defined by the RNN

• Train the RNN to minimize cross entropy (aka MLE)

• What about: what is the most probable sequence?

RNN language models

How well do RNN LMs do?

perplexity Word Error Rate  
(WER)

order=5 Markov
Kneser-Ney freq. est. 221 13.5

RNN 400 hidden 171 12.5

3xRNN interpolation 151 11.6

Mikolov et al. (2010 Interspeech) “Recurrent neural network based language model”

How well do RNN LMs do?

perplexity Word Error Rate  
(WER)

order=5 Markov
Kneser-Ney freq. est. 221 13.5

RNN 400 hidden 171 12.5

3xRNN interpolation 151 11.6

Mikolov et al. (2010 Interspeech) “Recurrent neural network based language model”

A conditional language model assigns probabilities to
sequences of words, , given some
conditioning context, .

w = (w1, w2, . . . , w`)

Conditional LMs

p(w | x) =
Ỳ

t=1

p(wt | x, w1, w2, . . . , wt�1)

As with unconditional models, it is again helpful to use  
the chain rule to decompose this probability:

What is the probability of the next word, given the history of  
previously generated words and conditioning context ?

x

x

Conditional LMs
 “input” “text output”
An author A document written by that author
A topic label An article about that topic
{SPAM, NOT_SPAM} An email
A sentence in French Its English translation
A sentence in English Its French translation
A sentence in English Its Chinese translation
An image A text description of the image
A document Its summary
A document Its translation
Meterological measurements A weather report
Acoustic signal Transcription of speech
Conversational history + database Dialogue system response
A question + a document Its answer
A question + an image Its answer

x w

Conditional LMs
 “input” “text output”
An author A document written by that author
A topic label An article about that topic
{SPAM, NOT_SPAM} An email
A sentence in French Its English translation
A sentence in English Its French translation
A sentence in English Its Chinese translation
An image A text description of the image
A document Its summary
A document Its translation
Meterological measurements A weather report
Acoustic signal Transcription of speech
Conversational history + database Dialogue system response
A question + a document Its answer
A question + an image Its answer

x w

Conditional LMs
 “input” “text output”
An author A document written by that author
A topic label An article about that topic
{SPAM, NOT_SPAM} An email
A sentence in French Its English translation
A sentence in English Its French translation
A sentence in English Its Chinese translation
An image A text description of the image
A document Its summary
A document Its translation
Meterological measurements A weather report
Acoustic signal Transcription of speech
Conversational history + database Dialogue system response
A question + a document Its answer
A question + an image Its answer

x w

Data for training conditional LMs

To train conditional language models, we need paired  
samples, .

Data availability varies. It’s easy to think of tasks that  
could be solved by conditional language models, but the  
data just doesn’t exist.

Relatively large amounts of data for:
Translation, summarisation, caption generation,  
speech recognition

{(xi,wi)}Ni=1

Evaluating conditional LMs
How good is our conditional language model?

These are language models, we can use cross-entropy  
or perplexity.

Task-specific evaluation. Compare the model’s most likely
output to human-generated expected output using a  
task-specific evaluation metric .

w⇤ = argmax
w

p(w | x)

L

L(w⇤,wref)

Examples of : BLEU, METEOR, WER, ROUGE.

Human evaluation.

okay to implement, hard to interpret

easy to implement, okay to interpret

hard to implement, easy to interpret

L

Evaluating conditional LMs
How good is our conditional language model?

These are language models, we can use cross-entropy  
or perplexity.

Task-specific evaluation. Compare the model’s most likely
output to human-generated expected output using a  
task-specific evaluation metric .

w⇤ = argmax
w

p(w | x)

L

L(w⇤,wref)

Examples of : BLEU, METEOR, WER, ROUGE.

Human evaluation.

okay to implement, hard to interpret

easy to implement, okay to interpret

hard to implement, easy to interpret

L

Lecture overview
The rest of this lecture will look at “encoder-decoder”  
models that learn a function that maps into a fixed-size  
vector and then uses a language model to “decode”  
that vector into a sequence of words, .w

x

Kunst kann nicht gelehrt werden…

Artistry can’t be taught…

x

w

encoder

decoder

representation

Lecture overview
The rest of this lecture will look at “encoder-decoder”  
models that learn a function that maps into a fixed-size  
vector and then uses a language model to “decode”  
that vector into a sequence of words, .w

x

A dog is playing on the beach.

x

w

encoder

decoder

representation

• Two questions

• How do we encode as a fixed-size vector, ?

• How do we condition on in the decoding
model?

Lecture overview

x c

c

- Problem (or at least modality) specific
- Think about assumptions

- Less problem specific
- We will review one standard solution: RNNs

Kalchbrenner and Blunsom 2013

c = embed(x)

s = Vc

Encoder

Kalchbrenner and Blunsom 2013

c = embed(x)

s = Vc

Encoder

Recurrent decoder
Source sentence

Embedding of wt�1

Recurrent connection

Learnt bias
ht = g(W[ht�1;wt�1] + s+ b])

ut = Pht + b0

p(Wt | x,w<t) = softmax(ut)

Kalchbrenner and Blunsom 2013

c = embed(x)

s = Vc

Encoder

Recurrent decoder
Source sentence

Embedding of wt�1

Recurrent connection

Recall unconditional RNN
ht = g(W[ht�1;wt�1] + b])

Learnt bias
ht = g(W[ht�1;wt�1] + s+ b])

ut = Pht + b0

p(Wt | x,w<t) = softmax(ut)

K&B 2013: Encoder
How should we define ?c = embed(x)

The simplest model possible:

What do you think of this model?

x1

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6

c =
X

i

xi

K&B 2013: RNN Decoder

c = embed(x)

s = Vc

Encoder

Recurrent decoder
Source sentence

Embedding of wt�1

Recurrent connection

Recall unconditional RNN
ht = g(W[ht�1;wt�1] + b])

Learnt bias
ht = g(W[ht�1;wt�1] + s+ b])

ut = Pht + b0

p(Wt | x,w<t) = softmax(ut)

h1

h0 x1

<s>

s

K&B 2013: RNN Decoder

softmax

p̂1

h1

h0 x1

<s>

s

K&B 2013: RNN Decoder

softmax

p̂1

h1

h0 x1

<s>

s

⇠

tom

p(tom | s, hsi)

K&B 2013: RNN Decoder

softmax

p̂1

h1

h0 x1

<s>

s

⇠

tom

p(tom | s, hsi)

K&B 2013: RNN Decoder

h2

softmax

x2

⇠
likes

⇥p(likes | s, hsi, tom)

softmax

p̂1

h1

h0 x1

<s>

s

⇠

tom

p(tom | s, hsi)

K&B 2013: RNN Decoder

h2

softmax

x2

⇠
likes

⇥p(likes | s, hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | s, hsi, tom, likes)

softmax

p̂1

h1

h0 x1

<s>

s

⇠

tom

p(tom | s, hsi)

K&B 2013: RNN Decoder

h2

softmax

x2

⇠
likes

⇥p(likes | s, hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | s, hsi, tom, likes)

x4

h4

softmax

⇠

</s>

⇥p(h\si | s, hsi, tom, likes, beer)

A word about decoding

w⇤ = argmax
w

p(w | x)

= argmax
w

|w|X

t=1

log p(wt | x,w<t)

In general, we want to find the most probable (MAP) output  
given the input, i.e.

A word about decoding

w⇤ = argmax
w

p(w | x)

= argmax
w

|w|X

t=1

log p(wt | x,w<t)

In general, we want to find the most probable (MAP) output  
given the input, i.e.

This is, for general RNNs, a hard problem. We therefore
approximate it with a greedy search:

undecidable :(

w⇤
1 ⇡ argmax

w1

p(w1 | x)

w⇤
2 ⇡ argmax

w2

p(w2 | x, w⇤
1)

...

w⇤
t ⇡ argmax

wt

p(wt | x,w⇤
<t)

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

x = Bier trinke ich
beer drink I

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

x = Bier trinke ich
beer drink I

logprob=-2.11

logprob=-1.82
beer

I

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

x = Bier trinke ich
beer drink I

logprob=-2.11

logprob=-1.82
beer

I

logprob=-6.93

logprob=-5.80

drink

I

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

x = Bier trinke ich
beer drink I

logprob=-2.11

logprob=-1.82
beer

I

logprob=-6.93

logprob=-5.80

drink

I

logprob=-8.66

logprob=-2.87
drink

beer

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

logprob=-2.11

x = Bier trinke ich
beer drink I

logprob=-1.82
beer

logprob=-8.66

logprob=-2.87

logprob=-6.93

logprob=-5.80

I

drink

I

drink

beer

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

logprob=-2.11

x = Bier trinke ich
beer drink I

logprob=-1.82
beer

logprob=-8.66

logprob=-2.87

logprob=-6.93

logprob=-5.80

logprob=-3.04

logprob=-5.12

logprob=-6.28

logprob=-7.31

I

drink

I

drink

beer beer

wine

drink

like

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

logprob=-2.11

x = Bier trinke ich
beer drink I

logprob=-1.82
beer

logprob=-8.66

logprob=-2.87

logprob=-6.93

logprob=-5.80

logprob=-3.04

logprob=-5.12

logprob=-6.28

logprob=-7.31

I

drink

I

drink

beer beer

wine

drink

like

A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

logprob=-2.11

x = Bier trinke ich
beer drink I

logprob=-1.82
beer

logprob=-8.66

logprob=-2.87

logprob=-6.93

logprob=-5.80

logprob=-3.04

logprob=-5.12

logprob=-6.28

logprob=-7.31

I

drink

I

drink

beer beer

wine

drink

like

How well does this model do?

 perplexity (2011) perplexity (2012)

order=5 Markov
Kneser-Ney freq. est. 222 225

RNN LM 178 181

RNN LM + x 140 142

How well does this model do?

How well does this model do?

How well does this model do?

How well does this model do?

How well does this model do?

How well does this model do?

How well does this model do?

(Literal: I will feel bad if you do not find a solution.)

How well does this model do?

(Literal: I will feel bad if you do not find a solution.)

Summary
• Conditional language modeling provides a convenient formulation for a lot

of practical applications

• Two big problems:

• Model expressivity

• Decoding difficulties

• Next time

• A better encoder for vector to sequence models

• “Attention” for better learning

• Lots of results on machine translation

Questions?

