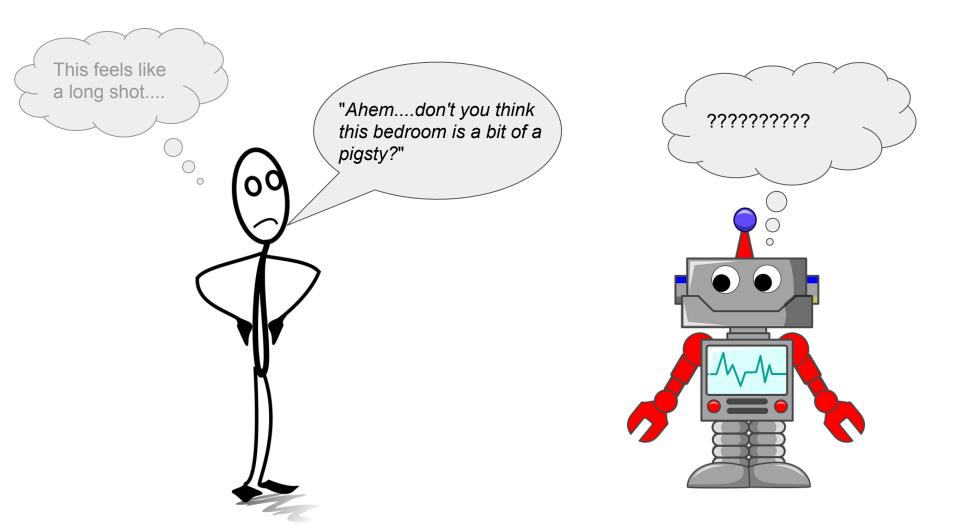
Situated Language Learning with Policy Gradients

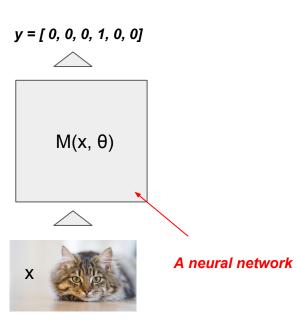
L14. Felix Hill

DeepMind



Reinforcement learning for games

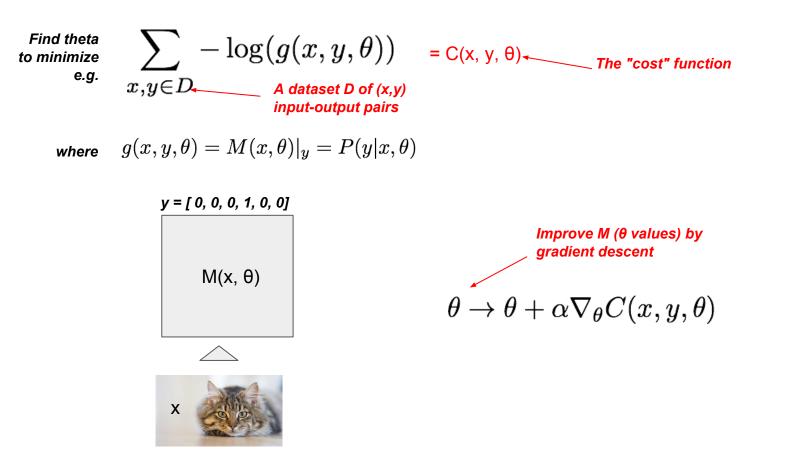
- General-purpose learning algorithm
- Works for many different problems
- Teaches us about the game

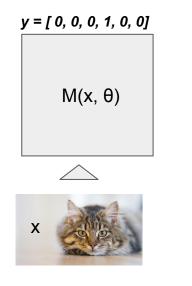


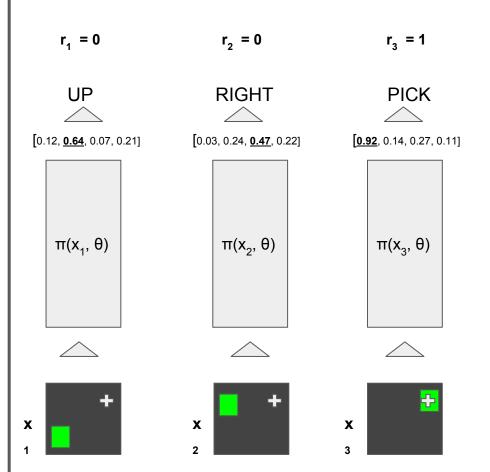
Find weights
$$\theta$$

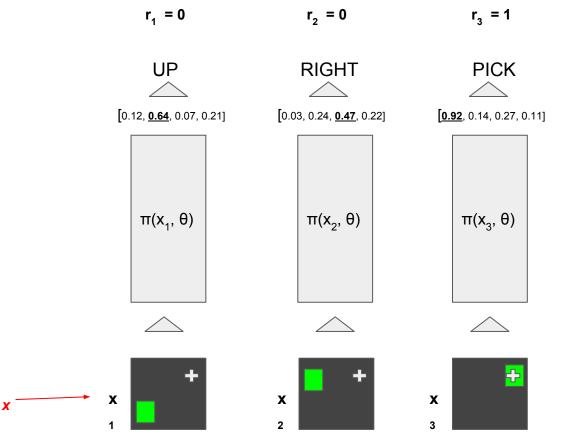
to minimize e.g.
$$\sum_{x,y \in D} -\log(g(x,y,\theta))$$

A dataset D of (x,y)
input-output pairs
where $g(x,y,\theta) = M(x,\theta)|_y = P(y|x,\theta)$
 $y = [0, 0, 0, 1, 0, 0]$
 $M(x, \theta)$
 \sum_{x}

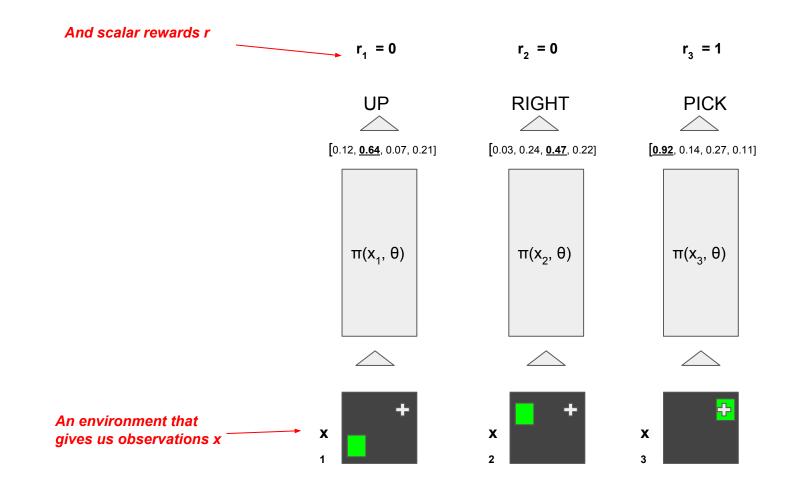


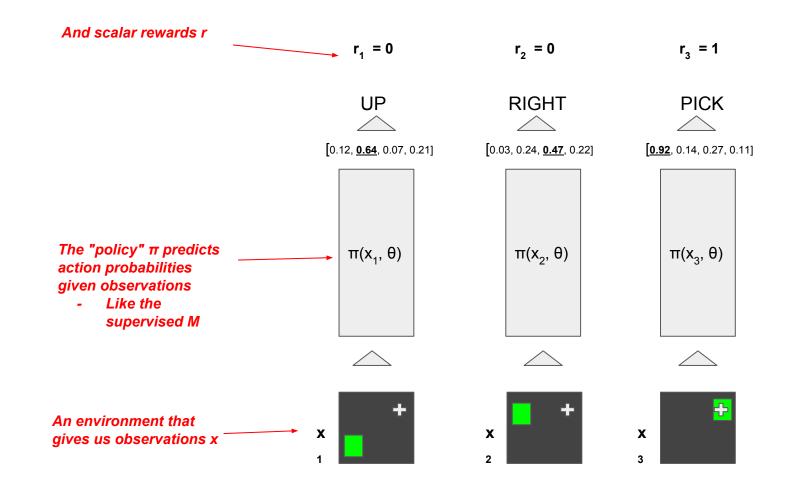


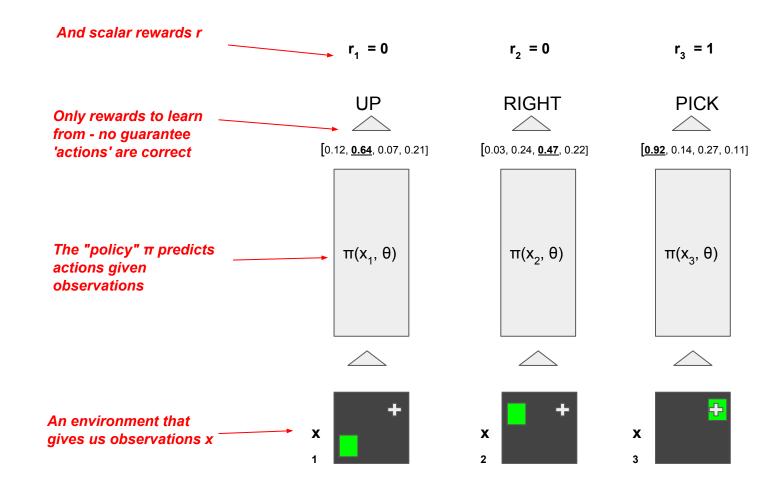




An environment that gives us observations x⁻







We want to optimise

 $J(\theta) = \mathbb{E}_{\pi(\theta)}(R)$

Find the policy weights that give us the highest expected return

where

 $R = \sum_{t=1}^{k} \gamma^t r_t$

All the reward I got from the environment

We want to optimise

$$J(\theta) = \mathbb{E}_{\pi(\theta)}(R)$$

 $R = \sum^{k} \gamma^{t} r_{t}$ t=1

we could just do gradient ascent!

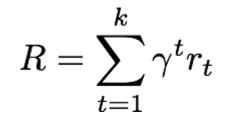
 $\theta \to \theta + \alpha \nabla_{\theta} J(\theta)$

where

We want to optimise

$$J(\theta) = \mathbb{E}_{\pi(\theta)}(R)$$

where



Trajectory

$$\tau = \{s_1 \cdots s_k, \}$$

We want to optimise

$$J(\theta) = \mathbb{E}_{\pi(\theta)}(R)$$

 $R = \sum_{t=1}^{k} \gamma^t r_t$

Trajectory

$$\tau = \{s_1 \cdots s_k, \}$$

Return $R(au) = \sum_{t=1}^k \gamma^t r_t$ Fo

For a stationary environment:

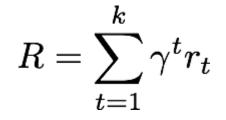
A given **trajectory** -> unique **well-defined return**

where

We want to optimise

$$J(\theta) = \mathbb{E}_{\pi(\theta)}(R)$$

where



Trajectory

$$\tau = \{s_1 \cdots s_k, \}$$

Return $R(\tau) = \sum_{t=1}^{k} \gamma^t r_t$

So condition on
$$J(\theta) = \mathbb{E}_{\pi(\theta)}(R) = \mathbb{E}_{\tau \in T|\pi}(R(\tau))$$
 trajectories

 $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \mid \pi(\theta)}(R(\tau))$

$$abla_{ heta} J(heta) =
abla_{ heta} \mathbb{E}_{ au \mid \pi(heta)} (R(au))$$

$$=
abla_{ heta} \sum_{ au \in T} R(au) P(au \mid \pi_{ heta}) \quad \text{Definition of expectation}$$
Space of all possible trajectories

$$egin{aligned}
abla_{ heta} J(heta) &=
abla_{ heta} \mathbb{E}_{ au \mid \pi(heta)} (R(au)) \ &=
abla_{ heta} \sum_{ au \in T} R(au) P(au \mid \pi_{ heta}) & ext{Definition of expectation} \ &= & \sum_{ au \in T} R(au)
abla_{ heta} P(au \mid \pi_{ heta}) & ext{Only P depends on theta} \end{aligned}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \mid \pi(\theta)} \big(R(\tau) \big) \\ &= \nabla_{\theta} \sum_{\tau \in T} R(\tau) P(\tau \mid \pi_{\theta}) \quad \text{Definition of expectation} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \quad \text{Only P depends on theta} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \frac{P(\tau \mid \pi_{\theta})}{P(\tau \mid \pi_{\theta})} \quad \mathbf{x 1} \end{split}$$

 ∇_{i}

$$\begin{split} \theta J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \mid \pi(\theta)} (R(\tau)) \\ &= \nabla_{\theta} \sum_{\tau \in T} R(\tau) P(\tau \mid \pi_{\theta}) \quad \text{Definition of expectation} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \quad \text{Only P depends on theta} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \frac{P(\tau \mid \pi_{\theta})}{P(\tau \mid \pi_{\theta})} \quad \textbf{x 1} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} \log P(\tau \mid \pi_{\theta}) P(\tau \mid \pi_{\theta}) \quad \text{By chain rule} \quad \nabla_{\theta} \log P(\tau \mid \pi_{\theta}) \leftarrow \frac{\nabla_{\theta} P(\tau \mid \pi_{\theta})}{P(\tau \mid \pi_{\theta})} \end{split}$$

 $|\pi_{\theta})$

 ∇

$$\begin{split} \theta J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \mid \pi(\theta)} (R(\tau)) \\ &= \nabla_{\theta} \sum_{\tau \in T} R(\tau) P(\tau \mid \pi_{\theta}) \quad \text{Definition of expectation} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \quad \text{Only P depends on theta} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \frac{P(\tau \mid \pi_{\theta})}{P(\tau \mid \pi_{\theta})} \quad \textbf{x 1} \\ &= \sum_{\tau \in T} R(\tau) \nabla_{\theta} \log P(\tau \mid \pi_{\theta}) P(\tau \mid \pi_{\theta}) \quad \text{By chain rule} \quad \nabla_{\theta} \log P(\tau \mid \pi_{\theta}) \leftarrow \frac{\nabla_{\theta} P(\tau \mid \pi_{\theta})}{P(\tau \mid \pi_{\theta})} \end{split}$$

 $= \mathbb{E}_{ au \in T}(R(au)
abla_{ heta} \log P(au | \pi_{ heta}))$ Definition of expectation

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \mid \pi(\theta)} (R(\tau))$$

$$= \nabla_{\theta} \sum_{\tau \in T} R(\tau) P(\tau \mid \pi_{\theta}) \quad \text{Definition of expectation}$$
The gradient of the objective wrt. policy
$$= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \quad \text{Only P depends on theta}$$

$$= \sum_{\tau \in T} R(\tau) \nabla_{\theta} P(\tau \mid \pi_{\theta}) \frac{P(\tau \mid \pi_{\theta})}{P(\tau \mid \pi_{\theta})} \quad \mathbf{x} \mathbf{1}$$

$$= \sum_{\tau \in T} R(\tau) \nabla_{\theta} \log P(\tau \mid \pi_{\theta}) P(\tau \mid \pi_{\theta}) \quad \text{By chain rule} \quad \nabla_{\theta} \log P(\tau \mid \pi_{\theta}) \leftarrow$$

$$= \mathbb{E}_{\tau \in T} \left(\frac{R(\tau) \nabla_{\theta} \log P(\tau \mid \pi_{\theta})}{P(\tau \mid \pi_{\theta})} \right) \quad \text{Definition of expectation}$$

$$A \text{ quantity that I can compute by following a trajectory } \boldsymbol{\sigma}$$

 $\frac{\nabla_{\theta} P(\tau | \pi_{\theta})}{P(\tau | \pi_{\theta})}$

The REINFORCE algorithm

To estimate $\nabla_{\theta} J(\theta)$ the gradient of our objective wrt. the parameters of the policy function.

We can estimate

$$\mathbb{E}_{\tau \in T}(R(\tau) \nabla_{\theta} \log P(\tau | \pi_{\theta}))$$

Notice also that

$$\nabla_{\theta} log(P(\tau|\pi)) = \nabla_{\theta} \sum_{t=1}^{k} logP(a_t|\pi, s_t)) = \sum_{t=1}^{k} \nabla_{\theta} logP(a_t|\pi, s_t))$$

So - act in the environment (follow trajectories).

-

At each time step, remember: $abla_{ heta} log P(a_t | \pi, s_t)$ After each trajectory (episode), compute : $R(au) = \sum_{t=1}^k \gamma^t r_t$ -

The REINFORCE algorithm

Initialise θ randomly:

For episodes $\{s_1, a_1, r_1 \cdots s_k, a_k, r_k\} \sim \pi_{\theta}$ Compute $R(\tau) = \sum_{t=1}^{k} \gamma^t r_t$ The gradient of the policy network, **For** t = 1 ... T: evaluated at a particular $\theta \to \theta + \alpha R \nabla_{\theta} \log \pi(x_t, a_t)$ input / output pair If action choices led to good rewards, move weights to follow gradient (scaled by R)

- **Something went well** (high LL) AND you know how to make it even better
- Something went badly (low LL) you know how to fix it

- **Something went well** (high R), you know what you did can reinforce
 - Not sure if you could have done better
- **Something went badly** (low R) no idea what you should have done

Learning language in RL environments

Language can refer to the visual world

- Similar to image captioning / VQA

Language can refer to **actions** and / or **policies**

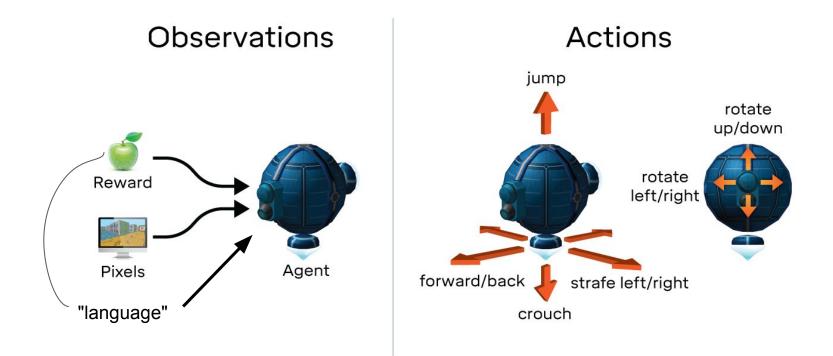
- Like a lot of natural language does!

Where does **reward** come from?

DeepMind Lab

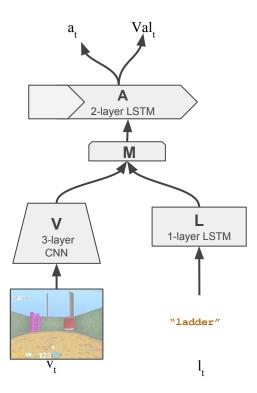
Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)

DeepMind Lab



Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)

Deep RL alone (A3C) not enough



Start off small (or large)...



Colour words...

Shape words...

Language in DeepMind Lab: The Lexicon

Shapes (40) tv, ball, balloon, cake, can, cassette, chair, guitar, hairbrush, hat, ice lolly, ladder, mug, pencil, suitcase, toothbrush, key, bottle, car, cherries, fork, fridge, hammer, knife, spoon, apple, banana, cow, flower, jug, pig, pincer, plant, saxophone, shoe, tennis racket, tomato, tree, wine glass, zebra.

Colours (13) red, blue, white, grey, cyan, pink, orange, black, green, magenta, brown, purple, yellow.

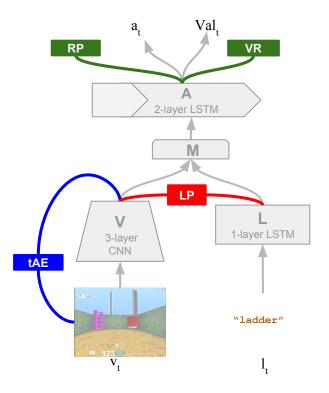
Patterns (9) plain, chequered, crosses, stripes, discs, hex, pinstripe, spots, swirls.

Shades (3) light, dark, neutral.

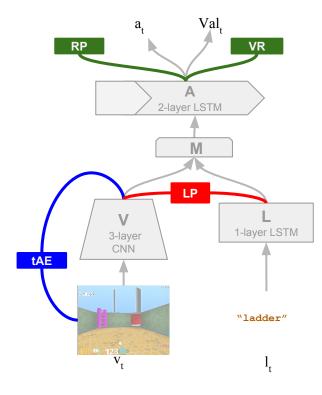
Sizes (3) small, large, medium.

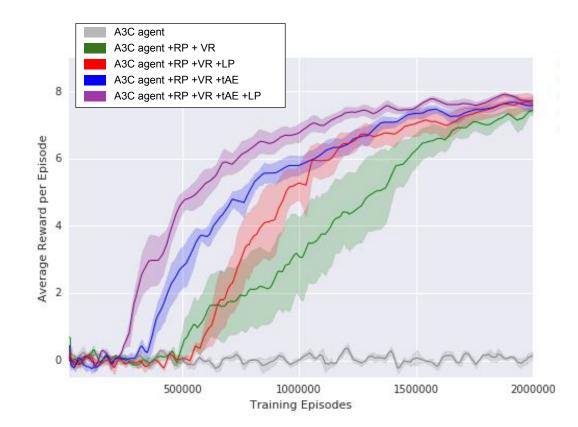
Hermann and Hill et al. Grounded Language Learning in a Simulated 3D World. arXiv 2017.

Auxiliary objectives



Unsupervised learning makes word learning possible

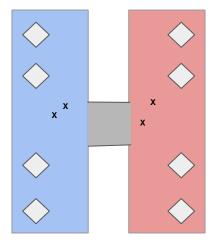


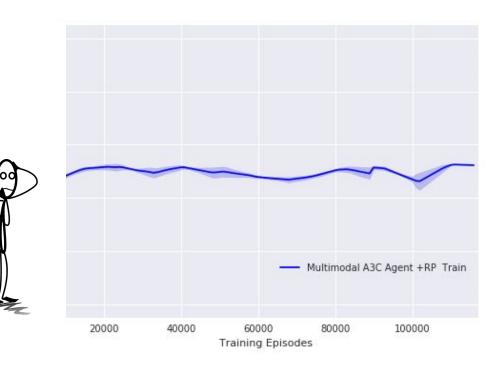


And provides insight into agents' 'thoughts'....

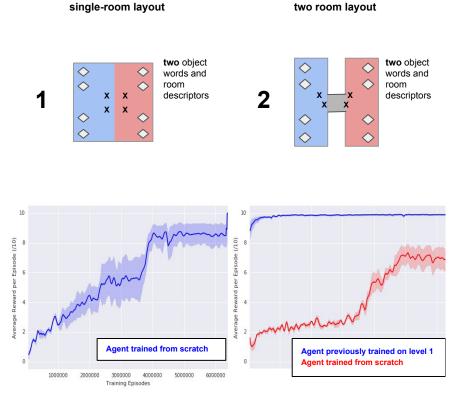
Combining exploration and language

Top-down view of the level





Curriculum is critical



Curriculum is critical

10

de (/10)

Epis per

ge Re Ave

1000000

2000000

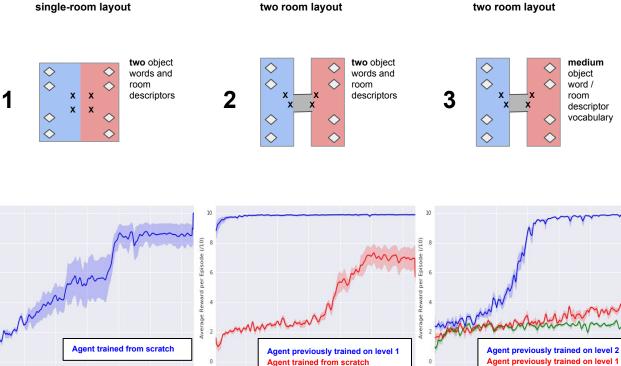
3000000

Training Episodes

4000000

5000000

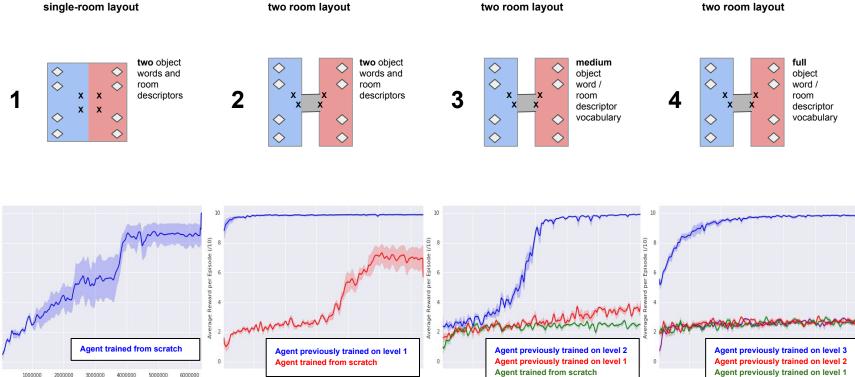
6000000



two room layout

Agent trained from scratch

Curriculum is critical



Agent trained from scratch

0000 3000000 4000000 500000 Training Episodes

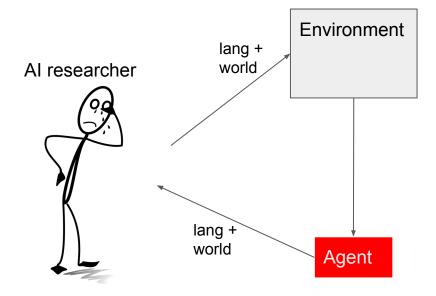
10

de (/10)

per Epis

ge Re

Isn't this all a bit convoluted?



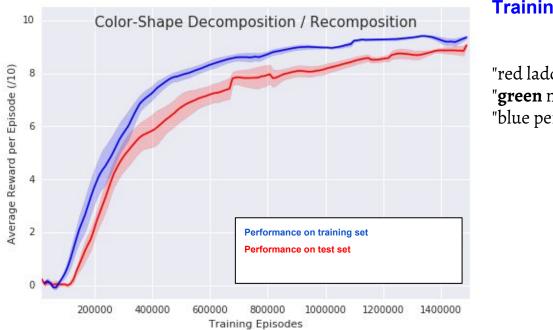
Agents naturally generalise word composition...

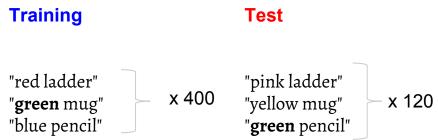
"pink ladder" "yellow mug" "green pencil"

Test

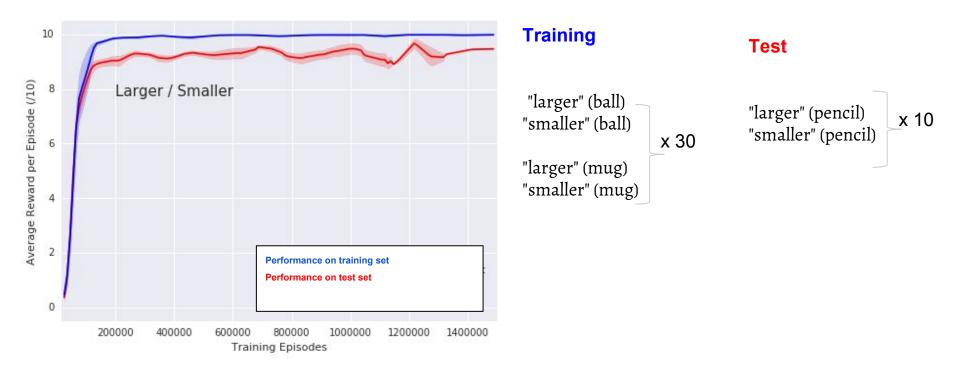
– x 120

Decompose before re-compose

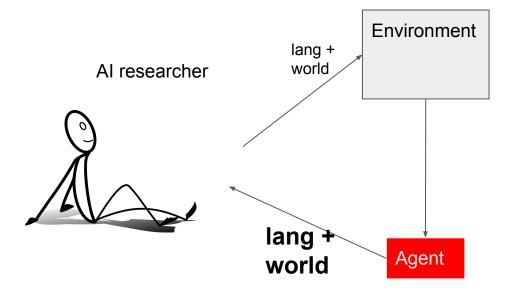




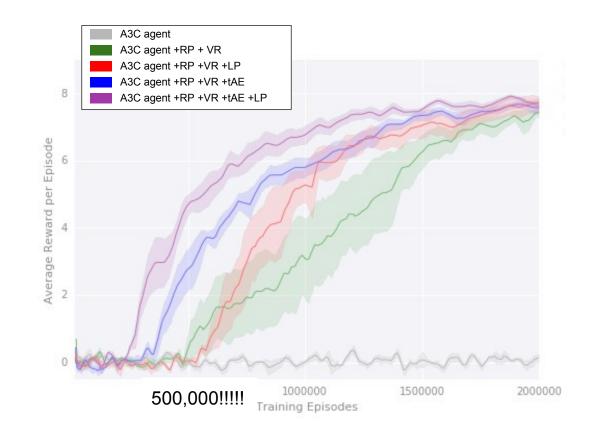
Apply modifiers and predicates to novel objects



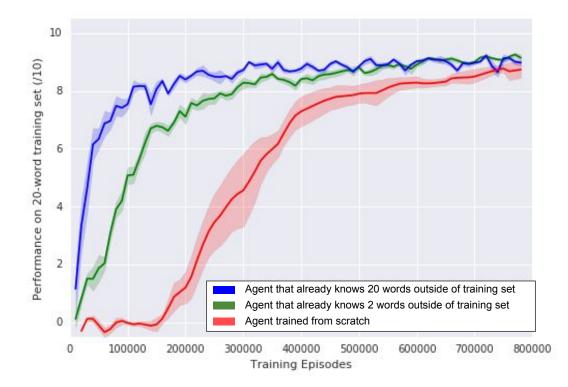
Generalisation (zero-shot etc...)



Isn't learning slow?



Word learning gets quicker the more the agent 'knows'



Much like little people

296 K. Plunkett et al.

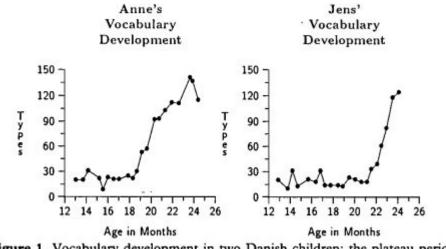
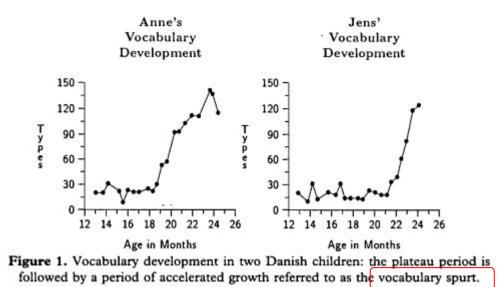


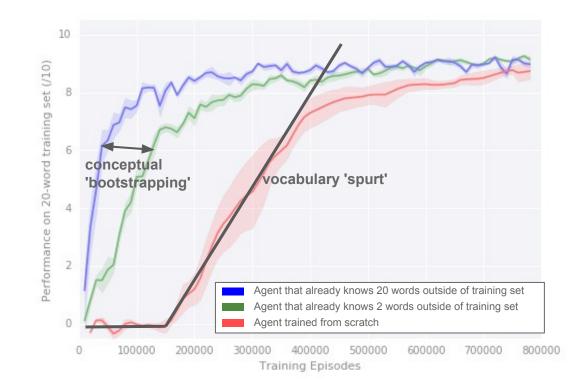
Figure 1. Vocabulary development in two Danish children: the plateau period is followed by a period of accelerated growth referred to as the vocabulary spurt.

Much like little people

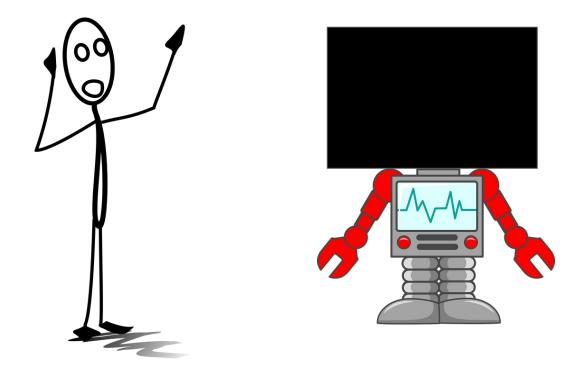
296 K. Plunkett et al.



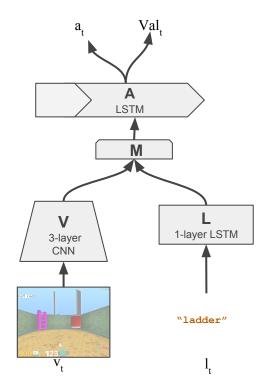
Much like little people



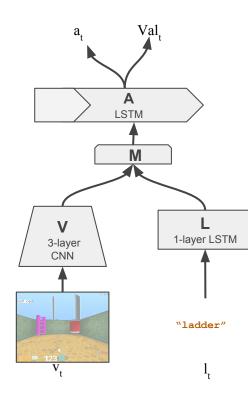
How does the agent represent its knowledge?

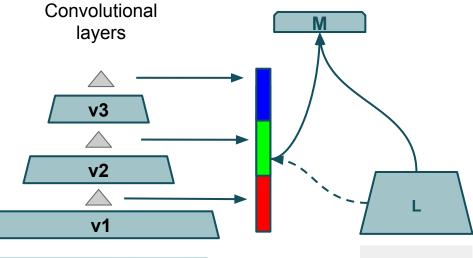


Layerwise attention



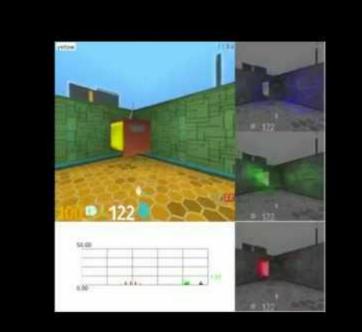
Layerwise attention

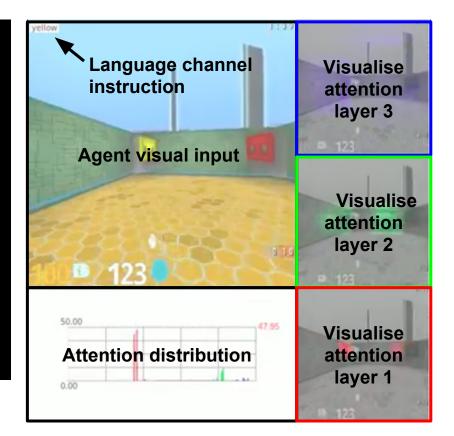




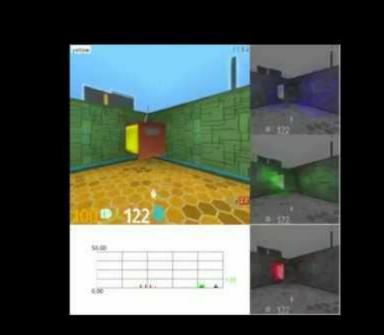
"language"

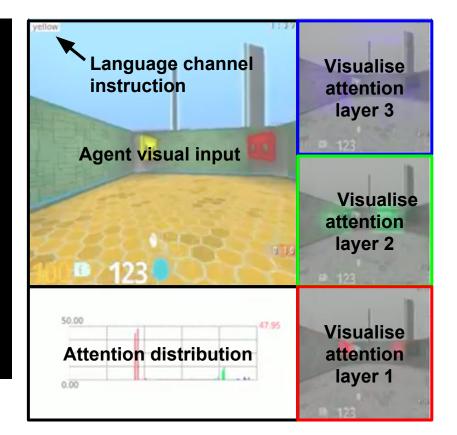
Processing colour words





Processing shape words





Conclusions

- Using RL we can ground language in vision, actions and policies
- Neural network policies enable natural generalisation and composition
- Ongoing work to scale approaches to **full sentences** and **natural commands**
 - What aspects of language are not covered by this approach?
 - What challenges do we face extending this?