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How do we represent 
sentence meaning?

• Is it a logical expression?


• Is it a vector? Many vectors?


• Is there just one notion of meaning, or is it task/context-
dependent?



Montague Semantics

• Sentence representations are logical expressions.


• Sentence understanding is parsing and combining 
constituents to obtain logical form.


• Syntax guides semantics.



Montague Semantics
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Montague Semantics

Pros: 

• Intuitive and interpretable(?) representations.


• Leverage the power of predicate logic to model 
semantics.


• Evaluate the truth of statements, derive conclusions, etc. 
 



Montague Semantics

Cons: 

• Brittle, requires robust parsers.


• Extensive logical model required for evaluation of clauses.


• Extensive set of rules required to do anything useful.


• Overall, an intractable (or unappealing) learning problem. 
 



Neural Networks as  
Models of Composition

• Sentence Classification: produce sentence 
representation, classify based on this representation


• Seq2Seq: Produce sentence representation, generate 
another sentence conditioned on this representation


 What models of composition? 

What objectives?



Algebraic Encoders



Sequence Encoders in 
Sequence Classification



Sequence Encoders in 
Seq2Seq



Sentence Matrices as 
Sentence Representations

Les chiens aiment les os ||| Dogs love bones

Dogs love bones </s>

Source sequence Target sequence

Les chiens aiment les os ||| Dogs love bones

Dogs love bones </s>

Source sequence Target sequence
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Incorporating Structure
Basic idea: use sampled or maximally likely parse 
tree to guide composition:


Perhaps additionally condition on the production 
rule:


f can be any differentiable function. There are RNN-
style and LSTM-style updates in various papers.


Figure due to Sam Bowman. 
Reproduced with author's permission.



What if you don’t have 
parses at test time?
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Figure due to Sam Bowman. 
Reproduced with author's permission.
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Figure due to Sam Bowman. 
Reproduced with author's permission.
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Figure due to Sam Bowman. 
Reproduced with author's permission.

Word vectors start on buffer b  
(top: first word in sentence).


Shift moves word vectors from buffer to stack s.


Reduce pops top two vectors off stack, applies a function fR to them, and 
pushes the result back on the stack.


Tracker LSTM tracks parser/composer state, decides shift/reduce actions 
a, is supervised by both observed shift-reduce operations and end task:




What if we don’t observe actions?

x y

x y

z



What if we don’t observe actions?



SPINN+REINFORCE
• Treat at ~ fA(ht) as a policy trained by REINFORCE.


• Reward is negated loss of the end task, e.g. NLL of correct label.


• Everything else is trained by backpropagation against the end task: tracker 
LSTM, representations, etc. receive gradient both from the supervised objective, 
and from Reinforce via the shift-reduce policy.  
 
 
 
 
 
 
 
 
 

a wo
man

wea
ring

sun
glas
ses

is frow
ning . a boy drag

s his sled
s

thro
ugh the sno

w .



What objective?

• Seq2Seq?


• Classification?


• Training against a specific objective will (trivially) produce 
representations that are useful for that objective?


• Can we get something more general?



Auto-Encoders
• Reconstruction objective includes 

nothing about distance preservation 
in latent space.


• Conversely, little incentive for similar 
latent codes to generate radically 
different (but semantically 
equivalent) observations.


• Generally, auto-encoders sparsely 
encode or densely compress 
information. No pressure to ensure 
similarity continuum amongst codes.  
 



Skip Thought

• Similar to auto-encoding objective: encode sentence, but decode 
neighbouring sentences. 


• Pair of LSTM-based seq2seq models with share encoder, but alternative 
formulations are possible. 


• Conceptually similar to distributional semantics: a unit’s representation is a 
function of its neighbouring units, except units are sentence instead of 
words. 



Variational Auto-Encoders

Prior on z enforces semantic continuum (e.g. no arbitrarily 
unrelated codes for similar data), but expectation is typically 
intractable to compute exactly, and Monte Carlo estimate of 
gradients will be high variance. 

z xN(0, I)



Variational Auto-Encoders

Goal is to estimate, by maximising p(x):


• The parameters θ of a function modelling the part of the 
generative process pθ(x|z) given samples from a fixed 
prior z ~ p(z).


• The parameters φ of a proposal distribution qφ(z|x) 
approximating the true posterior p(z|x).



Variational Auto-Encoders

How do we do it?


We maximise p(x) via a variational lower bound (VLB):


Equivalently we can maximise the NLL(x): 



Deriving the VLB

For right qφ(z|x) and p(z) (e.g. Gaussians) there is a closed 
form expression of DKL(qφ(z|x)||p(z)). 



Variational Auto-Encoders
Estimating                            requires backpropagating 
through samples. For some choices of q (e.g. Gaussians) this 
can be done through the use of reparameterization tricks.



Variational Auto-Encoders 
for Text



Some issues
• If decoder is powerful enough to model p(x) without exploiting 

the latent variable, the model will learn to ignore z and the VAE-
encoder is useless.


• This is what happens for LSTMs and other powerful 
autoregressive models.


• Some “hacky” solutions (e.g. KL annealing) exist, but this is an 
open research problem.


• In short, VAEs are promising, but not (yet) the solution for 
unsupervised sentence representation learning. 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