Deep Learning for Natural Language Processing

Stephen Clark et al. University of Cambridge and DeepMind

13. Sentence Representations

Edward Grefenstette DeepMind & UCL

How do we represent sentence meaning?

- Is it a logical expression?
- Is it a vector? Many vectors?
- Is there just one notion of meaning, or is it task/contextdependent?

- Sentence representations are logical expressions.
- Sentence understanding is parsing and combining constituents to obtain logical form.
- Syntax guides semantics.

Syntactic Analysis	Semantic Interpretation
$S \Rightarrow NP VP$	[VP]([NP])
$NP \Rightarrow cats, milk, etc.$	$[[cats]], [[milk]], \ldots$
$VP \Rightarrow Vt NP$	$\llbracket Vt \rrbracket (\llbracket NP \rrbracket)$
$Vt \Rightarrow like, hug, etc.$	$\lambda yx. [like] (x, y), \ldots$

Cats like milk.

Cats like milk.

Pros:

- Intuitive and interpretable(?) representations.
- Leverage the power of predicate logic to model semantics.
- Evaluate the truth of statements, derive conclusions, etc.

Cons:

- Brittle, requires robust parsers.
- Extensive logical model required for evaluation of clauses.
- Extensive set of rules required to do anything useful.
- Overall, an intractable (or unappealing) learning problem.

Neural Networks as Models of Composition

- Sentence Classification: produce sentence representation, classify based on this representation
- **Seq2Seq:** Produce sentence representation, generate another sentence conditioned on this representation

What models of composition?

What <u>objectives</u>?

Algebraic Encoders

General form: $\mathbf{p} = f(\mathbf{u}, \mathbf{v}, R, K)$ Add: $\mathbf{p} = \mathbf{u} + \mathbf{v}$ WeightAdd: $\mathbf{p} = \alpha^T \mathbf{u} + \beta^T \mathbf{v}$ Multiplicative: $\mathbf{p} = \mathbf{u} \otimes \mathbf{v}$ Combined: $\mathbf{p} = \alpha^T \mathbf{u} + \beta^T \mathbf{v} + \gamma^T (\mathbf{u} \otimes \mathbf{v})$

Sequence Encoders in Sequence Classification

Sequence Encoders in Seq2Seq

Sentence Matrices as Sentence Representations

Incorporating Structure

Basic idea: use sampled or maximally likely parse tree to guide composition:

 $\mathbf{parent} = f_{\theta}(\mathbf{child}_1, \dots, \mathbf{child}_n)$

Perhaps additionally condition on the production rule:

 $\mathbf{parent} = f_{\theta}(\mathbf{child}_1, \dots, \mathbf{child}_n; \mathbf{A} \to \mathbf{B} \mathbf{C})$

f can be any differentiable function. There are RNNstyle and LSTM-style updates in various papers.

Figure due to Sam Bowman. Reproduced with author's permission.

What if you don't have parses at test time?

[SHIFT, SHIFT, REDUCE, SHIFT, SHIFT, REDUCE, REDUCE]

[SHIFT, SHIFT, SHIFT, SHIFT, REDUCE, REDUCE, REDUCE] [SHIFT, SHIFT, SHIFT, REDUCE, SHIFT, REDUCE, REDUCE]

Figure due to Sam Bowman. Reproduced with author's permission.

SPINN

Figure due to Sam Bowman. Reproduced with author's permission.

SPINN

Figure due to Sam Bowman. Reproduced with author's permission.

Word vectors start on buffer *b* (top: first word in sentence).

Shift moves word vectors from buffer to stack s.

Reduce pops top two vectors off stack, applies a function **f**^R to them, and pushes the result back on the stack.

Tracker LSTM tracks parser/composer state, decides shift/reduce actions *a*, is supervised by both observed shift-reduce operations and end task:

$$h_t = LSTM(f^C(b_{t-1}[0], s_{t-1}[0], s_{t-1}[1]), h_{t-1}) \qquad a_t \sim f^A(h_t)$$

What if we don't observe actions?

 $p(y|x) = \mathbb{E}_{p_{\theta}(z|x)} \left[f_{\phi}(z,x) \right] \quad \text{s.t. } y \sim f_{\phi}(z,x) \text{ or } y = f_{\phi}(z,x)$

$$\nabla_{\phi} p(y|x) = \sum_{z} p_{\theta}(z|x) \nabla_{\phi} f_{\phi}(z,x) = \mathbb{E}_{p_{\theta}(z|x)} \left[\nabla_{\phi} f_{\phi}(z,x) \right]$$
$$\nabla_{\theta} p(y|x) = \sum_{z} f_{\phi}(z,x) \nabla_{\theta} p_{\theta}(z|x) = ???$$

What if we don't observe actions?

REINFORCE Log-Trick:

$$\nabla_{\theta} \log p_{\theta}(z|x) = \frac{\nabla_{\theta} p_{\theta}(z|x)}{p_{\theta}(z|x)} \quad \Rightarrow \quad \nabla_{\theta} p_{\theta}(z|x) = p_{\theta}(z|x) \nabla_{\theta} \log p_{\theta}(z|x)$$

$$\nabla_{\theta} p(y|x) = \sum_{z} f_{\phi}(z, x) \nabla_{\theta} p_{\theta}(z|x)$$

$$= \sum_{z} f_{\phi}(z, x) p_{\theta}(z|x) \nabla_{\theta} \log p_{\theta}(z|x)$$

$$= \mathbb{E}_{p_{\theta}(z|x)} \left[f_{\phi}(z, x) \nabla_{\theta} \log p_{\theta}(z|x) \right]$$

SPINN+REINFORCE

- Treat $\mathbf{a}_t \sim f^A(h_t)$ as a policy trained by REINFORCE.
- Reward is negated loss of the end task, e.g. NLL of correct label.
- Everything else is trained by backpropagation against the end task: tracker LSTM, representations, etc. receive gradient both from the supervised objective, and from Reinforce via the shift-reduce policy.

What objective?

- Seq2Seq?
- Classification?
- Training against a specific objective will (trivially) produce representations that are useful for that objective?
- Can we get something more general?

Auto-Encoders

- Reconstruction objective includes nothing about distance preservation in latent space.
- Conversely, little incentive for similar latent codes to generate radically different (but semantically equivalent) observations.
- Generally, auto-encoders sparsely encode or densely compress information. No pressure to ensure similarity continuum amongst codes.

Skip Thought

- Similar to auto-encoding objective: encode sentence, but decode neighbouring sentences.
- Pair of LSTM-based seq2seq models with share encoder, but alternative formulations are possible.
- Conceptually similar to distributional semantics: a unit's representation is a function of its neighbouring units, except units are sentence instead of words.

$$\begin{split} p(x) &= \int p(x,z)dz \\ &= \int p(x|z)p(z)dz & \text{N(0, I)} \xrightarrow{} x \\ &= \mathbb{E}_{p(z)}\left[p(x|z)\right] \end{split}$$

Prior on z enforces semantic continuum (e.g. no arbitrarily unrelated codes for similar data), but expectation is typically intractable to compute exactly, and Monte Carlo estimate of gradients will be high variance.

Goal is to estimate, by maximising p(x):

- The parameters θ of a function modelling the part of the generative process $p_{\theta}(x|z)$ given samples from a fixed prior $z \sim p(z)$.
- The parameters ϕ of a *proposal distribution* $q_{\phi}(z|x)$ approximating the true posterior p(z|x).

How do we do it?

We maximise p(x) via a variational lower bound (VLB):

$$\log p(x) \ge \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z)\right] - D_{KL} \left(q_{\phi}(z|x) \| p(z)\right)$$

Equivalently we can maximise the NLL(x):

 $NLL(x) \leq \mathbb{E}_{q_{\phi}(z|x)}[NLL_{\theta}(x|z)] + D_{KL}\left(q_{\phi}(z|x) \| p(z)\right)$

Deriving the VLB

$$\begin{split} \log p(x) &= \log \int \mathbf{1} \cdot p_{\theta}(x|z) p(z) dz \\ &= \log \int \frac{q_{\phi}(z|x)}{q_{\phi}(z|x)} p_{\theta}(x|z) p(z) dz \\ &= \log \mathbb{E}_{q_{\phi}(z|x)} \left[\frac{p(z)}{q_{\phi}(z|x)} p_{\theta}(x|z) \right] \\ &\geq \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p(z)}{q_{\phi}(z|x)} + \log p_{\theta}(x|z) \right] \\ &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL} \left(q_{\phi}(z|x) || p(z) \right] \end{split}$$

For right $q_{\phi}(z|x)$ and p(z) (e.g. Gaussians) there is a closed form expression of DKL($q_{\phi}(z|x)||p(z)$).

Estimating $\frac{\partial}{\partial \phi} \mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)]$ requires backpropagating through samples. For some choices of *q* (e.g. Gaussians) this can be done through the use of *reparameterization tricks*.

$$z \sim N(z; \mu, \sigma^2)$$

equivalent to $z = \mu + \sigma \epsilon$
where $\epsilon \sim N(\epsilon; \mathbf{0}, \mathbf{I})$

Variational Auto-Encoders for Text

- 1. Observe a sentence w_1, \ldots, w_n . Encode it, e.g. with an LSTM: $h^e = LSTM^e(w_1, \ldots, w_n)$
- 2. Predict $\mu = f^{\mu}(h^e)$ and $\sigma^2 = f^{\sigma}(h^e)$ (in practice we operate in log space for σ^2 by determining $\log \sigma$).
- 3. Sample $z \sim q(z|x) = N(z; \mu, \sigma^2)$
- 4. Use conditional RNN to decode and measure $\log p(x|z)$. Use closed-form formula of KL divergence of two Gaussians to calculate $-D_{KL} (q_{\phi}(z|x)||p(z))$. Add both to obtain maximisation objective.
- 5. Backpropagate gradient through decoder normally based on log component of the objective, and use reparameterisation trick to backpropagate through sampling operation back to encoder.
- 6. Gradient of the KL divergence component of the loss with regard to the encoder parameters is straightforward backpropagation.

Some issues

- If decoder is powerful enough to model p(x) without exploiting the latent variable, the model will learn to ignore z and the VAEencoder is useless.
- This is what happens for LSTMs and other powerful autoregressive models.
- Some "hacky" solutions (e.g. KL annealing) exist, but this is an open research problem.
- In short, VAEs are promising, but not (yet) the solution for unsupervised sentence representation learning.

Reading

Montague, R. (1970). English as a formal language.

Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic composition. proceedings of ACL-08: HLT, 236-244.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In *Advances in neural information processing* systems (pp. 3104-3112).

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the 2013 conference on empirical methods in natural language processing* (pp. 1631-1642).

Bowman, S. R., Gauthier, J., Rastogi, A., Gupta, R., Manning, C. D., & Potts, C. (2016). A fast unified model for parsing and sentence understanding. arXiv preprint arXiv:1603.06021.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. In *Reinforcement Learning* (pp. 5-32). Springer, Boston, MA.

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E., & Ling, W. (2016). Learning to compose words into sentences with reinforcement learning. *ICLR* 2017.

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., & Ng, A. Y. (2011). Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In *Advances in neural information processing systems* (pp. 801-809).

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., & Bengio, S. (2015). Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.

