
POWER and ARM

– p. 1

IBM POWER: high-end server processor

POWER 8: up to 192 cores, each with up to 8 h/w threads
https://en.wikipedia.org/wiki/POWER8

Power7: IBM’s Next-Generation Server Processor. Kalla, R.;
Sinharoy, B.; Starke, W.J.; Floyd, M.
http://www.hotchips.org/wp-content/uploads/hc_archives/hc21/3_

ARMv8-A: 64-bit application-class (vs microcontrollers)

Cores designed by ARM and by others, in various SoCs.
https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores

Samsung Exynos 7420 and Qualcomm Snapdragon 810,
containing 4xCortex-A57+4xCortex-A53

Nvidia Denver

... – p. 2

https://en.wikipedia.org/wiki/POWER8
http://www.hotchips.org/wp-content/uploads/hc_archives/hc21/3_tues/HC21.25.800.ServerSystemsII-Epub/HC21.25.829.Kalla-IBM-POWER7NextGenerationServerProcessorv7display.pdf
https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores

POWER and ARM

Much weaker than x86-TSO:

programmer-visible out-of-order and speculative
execution

non-multi-copy-atomic storage subsystem

Similar but not identical to each other

– p. 3

Operational Models, Overview
Operational abstract-machine models:

thread-local semantics (speculation)

storage subsystem semantics (propagation)

top-level parallel composition of those

Write request

Read request

Barrier request

Read response

Barrier ack

Storage Subsystem

ThreadThread

Broadly corresponding to microarchitecture: to a first approximation this “thread” models the
pipeline (and perhaps the L1 store queue); this “storage subsystem” models the remainder of the
cache hierarchy and interconnect.

– p. 4

Features
normal loads and stores (aligned, non-mixed-size, no self-modifying
code)

the (strong) barriers: sync (POWER) and dmb (ARM)
(aka hwsync and dmb sy)

dependencies and isync/isb
weaker barriers: lwsync (POWER); dmb ld and dmb st (ARM)

SC loads and stores: LDAR/STLR (ARM)

atomic operations: load-linked/store conditional pairs. lwarx/stwcx
(POWER), LDREX/STREX (ARM), ...

misaligned and mixed-size accesses

ISA semantics and ISA/concurrency integration
exceptions and interrupts

virtual memory

other memory types (device memory, write-combining memory, ...)

... – p. 5

Coherence
Reads and writes to each location in isolation behave SC

CoRR1: rf,po,fr forbidden

Test CoRR1

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[x]=1

rf
po

rf

CoRW: rf,po,co forbidden

Test CoRW

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po

rf

co

CoWR: co,fr forbidden

Test CoWR

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
rf

co

CoWW: po,co forbidden

Test CoWW: Forbidden

Thread 0

b: W[x]=2

a: W[x]=1

copo

CoRW1: po,rf forbidden

Test CoRW1: Forbidden

Thread 0

b: W[x]=1

a: R[x]=1

rfpo

(these shapes are in some sense complete...) – p. 6

Maintaining Coherence in hardware

cache protocol (MSI, MESI, MOESI, ...)

more broadly, the interconnect design

a bunch of other hazard checks in the pipeline

...

– p. 7

Pipeline Aspects: Basics

– p. 8

Thread Semantics

Unless constrained, instructions can be executed out-of-order
and speculatively

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Microarchitecturally: modern pipelines typically do out-of-order
execution and speculate past conditional branches

– p. 9

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed?: 1:r1=1 ∧ 1:r2=0
Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

– p. 10

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0
Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

– p. 10

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0
Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Microarchitecturally:

pipeline: out-of-order execution of the writes

pipeline: out-of-order execution of the reads

storage subsystem: write propagation in either order

– p. 10

Enforcing Order with Barriers

MP+dmb/syncs Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync dmb/sync

y=1 r2=x

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM

Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]

STR R0,[R2] DMB

DMB LDR R1,[R2]

MOV R1,#1

STR R1,[R3]

Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y

Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER

Thread 0 Thread 1

li r1,1 lwz r1,0(r2)

stw r1,0(r2) sync

sync lwz r3,0(r4)

li r3,1

stw r3,0(r4)

Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x

Forbidden: 1:r1=1 ∧ 1:r3=0

– p. 11

Enforcing Order with Barriers

MP+dmb/syncs Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync dmb/sync

y=1 r2=x

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM

Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]

STR R0,[R2] DMB

DMB LDR R1,[R2]

MOV R1,#1

STR R1,[R3]

Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y

Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER

Thread 0 Thread 1

li r1,1 lwz r1,0(r2)

stw r1,0(r2) sync

sync lwz r3,0(r4)

li r3,1

stw r3,0(r4)

Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x

Forbidden: 1:r1=1 ∧ 1:r3=0

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

MP+dmbs/syncs Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G

MP+lwsyncs Forbid 0/6.9G 0/40G 0/220G — — — —

– p. 11

Enforcing Order with Dependencies

Test MP+dmb/sync+addr’: Forbidden

Thread 0

a: W[x]=1

b: W[y]=&x

c: R[y]=&x

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

MP+dmb/sync+addr′ Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync

y=&x r2=*r1

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=&x ∧ 1:r2=0

Microarchitecturally: the processor is not (in any
programmer-visible way...) speculating the value used for the
address of the second read.

– p. 12

Enforcing Order with Dependencies

POWER and ARM architecturally guarantee to respect
address dependencies even if they are “false” or “artificial”:

Test MP+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

MP+dmb/sync+addr Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync r3=(r1 xor r1)

y=1 r2=*(&x + r3)

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

NB: your compiler will not respect this!

– p. 12

Enforcing Order with Dependencies
Microarchitecturally: processors do speculate the outcomes of
conditional branches, executing past them before they are
resolved:

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrl

rf

MP+dmb/sync+ctrl

Thread 0 Thread 1

x=1 r1=y

dmb/sync if (r1 == 1)

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0

This is a read-to-read control dependency

– p. 12

Enforcing Order with Dependencies
Microarchitecturally: processors do speculate the outcomes of
conditional branches, executing past them before they are
resolved:

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrl

rf

MP+dmb/sync+ctrl

Thread 0 Thread 1

x=1 r1=y

dmb/sync if (r1 == 1)

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0

Strengthen with ISB/isync instruction between branch and
second read:

Thread-local read-to-read ordering is enforced by a conditional branch that is data-dependent on
the first read, with an ISB/isync between the branch and the second read – call this a
control-isb/control-isync dependency

– p. 12

Enforcing Order with Dependencies

Read-to-Read: address and control-isb/control-isync
dependencies respected; control dependencies not respected

Read-to-Write: address, data, and control dependencies all
respected

(POWER: all whether natural or artificial. ARM: some debate
about artificial data dependencies)

– p. 13

Pipeline Aspects: Further Subtleties

– p. 14

Programmer-visible shadow registers

Test MP+sync+rs (T1 reg reuse): Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

po

rf

MP+dmb/sync+rs Pseudocode

Thread 0 Thread 1

x=1 r3=y

dmb/sync r1=r3

y=1 r3 = x

Allowed: 1:r1=1 ∧ 1:r3=0

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB+rs Allow 0/3.7G 0/26G 0/898G 101k/3.9G 6.4k/89M 0/26G 60k/201M

MP+dmb/sync+rs Allow 1.8k/3.0G 0/41G 29M/146G 9.0M/3.9G 1.2k/19M 11k/753M 549k/201M

Reuse of the same architected register name does not enforce local

reordering. Microarchitecturally: there are shadow registers and

register renaming.

– p. 15

Pipeline write forwarding: PPOAA/PPOCA

Test PPOAA: Forbidden

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

dmb/sync
rf

addr

rf

addrrf

– p. 16

Pipeline write forwarding: PPOAA/PPOCA

Test PPOAA: Forbidden

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

dmb/sync
rf

addr

rf

addrrf

Test PPOCA: Allowed

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

e: R[x]=1

f: R[z]=0

d: W[x]=1

dmb/sync
rf

ctrl

rf

rf

addr

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

PPOCA Allow 1.1k/3.4G 0/49G 175k/157G 0/24G 0/39G 233/743M 0/2.2G

PPOAA Forbid 0/3.4G 0/46G 0/209G 0/24G 0/39G 0/26G 0/2.2G

Writes on speculatively executed branches are not visible to other

threads, but can be forwarded to po-later reads on the same thread.

Microarchitecturally: they can be read from an L1 store queue
– p. 16

Aggressively out-of-order reads (RSW/RDW)
Coherence suggests reads from the same address must be satisified in
program order, but if they read from the same write event, that’s not true.

Test RDW: Forbidden

Thread 0

a: W[z]=1

b: W[y]=2

c: R[y]=2

Thread 1

d: R[x]=0

e: R[x]=1

f: R[z]=0

Thread 2

g: W[x]=1

dmb/sync
rf

rf

rf

rf

addr

addr

po

Test RSW: Allowed

Thread 0

a: W[z]=1

b: W[y]=2

c: R[y]=2

Thread 1

d: R[x]=0

e: R[x]=0

f: R[z]=0

dmb/sync
rf

addr

po

addrrf

rf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

RSW Allow 1.3k/3.4G 0/33G 33M/144G 0/24G 0/39G 0/26G 0/2.2G

RDW Forbid 0/1.7G 0/17G 0/125G — 0/20G — —

RDWI Allow 5.2k/3.0G 0/12G 1.3M/43G 0/24G 0/39G 0/26G 0/2.2G
– p. 17

Aggressively out-of-order reads (RSW/RDW)
Coherence suggests reads from the same address must be satisified in
program order, but if they read from the same write event, that’s not true.

Test RDW: Forbidden

Thread 0

a: W[z]=1

b: W[y]=2

c: R[y]=2

Thread 1

d: R[x]=0

e: R[x]=1

f: R[z]=0

Thread 2

g: W[x]=1

dmb/sync
rf

rf

rf

rf

addr

addr

po

Test RSW: Allowed

Thread 0

a: W[z]=1

b: W[y]=2

c: R[y]=2

Thread 1

d: R[x]=0

e: R[x]=0

f: R[z]=0

dmb/sync
rf

addr

po

addrrf

rf

Microarchitecturally: one can imagine the reads can in general be satisfied out-of-order, and the
coherence hazard checking looks at whether the x cache line changes between the two reads.

– p. 17

Observable Read-request Buffering

Test MP+dmb/lwsync+fri-rfi-ctrlisb/ctrlisync

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

d: W[y]=2

Thread 1

e: R[y]=2

f: R[x]=0

rf

co

po

rf

rf

dmb/lwsync

ctrlisb/ctrlisync

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP+dmb/lwsync+fri-rfi-ctrlisb/isync Allow 0/26G 0/6.6G 0/80G 0/26G 0/39G 7/1.6G 0/1.9G

PLDI11 POWER model: forbidden
POWER architectural intent: uncommitted
ARM: experimentally observed (on Qualcomm part) and not
regarded as h/w bug

– p. 18

Load Buffering (LB)

Test LB: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

LB Pseudocode

Thread 0 Thread 1

r1=x r2=y

y=1 x=1

Initial state: x=0 ∧ y=0

Allowed: r1=1 ∧ r2=1

Architecturally allowed on POWER and ARM

– p. 19

Load Buffering (LB)

Test LB: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

LB Pseudocode

Thread 0 Thread 1

r1=x r2=y

y=1 x=1

Initial state: x=0 ∧ y=0

Allowed: r1=1 ∧ r2=1

Forbid with address or data dependencies:
POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB Allow 0/7.4G 0/43G 0/258G 1.5M/3.9G 124k/16M 58/1.6G 1.3M/185M

LB+addrs Forbid 0/6.9G 0/40G 0/216G 0/24G 0/39G 0/26G 0/2.2G

LB+datas Forbid 0/6.9G 0/40G 0/252G 0/16G 0/23G 0/18G 0/2.2G

LB+ctrls Forbid 0/4.5G 0/16G 0/88G 0/8.1G 0/7.5G 0/1.6G 0/2.2G

– p. 19

Load Buffering (LB)

Test LB: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

LB Pseudocode

Thread 0 Thread 1

r1=x r2=y

y=1 x=1

Initial state: x=0 ∧ y=0

Allowed: r1=1 ∧ r2=1

LB+datas: thin-air values?

Test LB+datas: Forbidden

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

data
rf rf

data

LB+datas Pseudocode

Thread 0 Thread 1

r1=x r2=y

y=r1 x=r2

Initial state: x=0 ∧ y=0

Forbidden: r1=1 ∧ r2=1

– p. 19

Load Buffering (LB)

Test LB: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

LB Pseudocode

Thread 0 Thread 1

r1=x r2=y

y=1 x=1

Initial state: x=0 ∧ y=0

Allowed: r1=1 ∧ r2=1

Microarchitecturally: simple out-of-order execution? read-request buffering? think about precise
exceptions...

– p. 19

Might-access-same-address

Test LB+addrs+WW: Forbidden

Thread 0

a: R[x]=1

b: W[y]=1

c: W[z]=1

d: R[z]=1

Thread 1

e: W[a]=1

f: W[x]=1

addr

po
rf

addr
rf

po

Test LB+datas+WW: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: W[z]=1

d: R[z]=1

Thread 1

e: W[a]=1

f: W[x]=1

data

po
rf

data
rf

po

Address and data dependencies to a write both prevent the write being visible to other threads
before the dependent value is fixed. But there is a more sutble effect that distinguishes them: the
existence of a address dependency to a write might mean that another program-order-later write
cannot proceed until it is known that the first write is not to the same address, whereas the
existence of a data dependency to a write has no such effect on program-order-later writes that
are statically known to be to different addresses.

Does it matter?

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB+addrs+WW Forbid 0/30G 0/8.7G 0/208G 0/16G 0/23G 0/18G 0/2.1G

LB+datas+WW Allow 0/30G 0/9.2G 0/208G 15k/6.3G 224/854M 0/18G 23/1.9G

LB+addrs+RW Forbid 0/3.6G 0/6.0G 0/128G 0/13G 0/23G 0/16G —

– p. 20

Might-access-same-address

Test LB+addrs+WW: Forbidden

Thread 0

a: R[x]=1

b: W[y]=1

c: W[z]=1

d: R[z]=1

Thread 1

e: W[a]=1

f: W[x]=1

addr

po
rf

addr
rf

po

Test LB+datas+WW: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: W[z]=1

d: R[z]=1

Thread 1

e: W[a]=1

f: W[x]=1

data

po
rf

data
rf

po

Test LB+addrs+RW: Forbidden

Thread 0

a: R[x]=1

b: R[y]=0

c: W[z]=1

d: R[z]=1

Thread 1

e: R[a]=0

f: W[x]=1

addr

po
rf

addr

rf
po

rf rf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB+addrs+WW Forbid 0/30G 0/8.7G 0/208G 0/16G 0/23G 0/18G 0/2.1G

LB+datas+WW Allow 0/30G 0/9.2G 0/208G 15k/6.3G 224/854M 0/18G 23/1.9G

LB+addrs+RW Forbid 0/3.6G 0/6.0G 0/128G 0/13G 0/23G 0/16G —
– p. 20

Storage Subsystem Aspects

(multi-copy atomicity and cumulative

barriers)

Things get more interesting with more than two hardware threads....

– p. 21

Iterated Message Passing and Cumulative Barriers

WRC-loop Pseudocode

Thread 0 Thread 1 Thread 2

x=1 while (x==0) {} while (y==0) {}

y=1 r3=x

Initial state: x=0 ∧ y=0

Forbidden?: 2:r3=0

– p. 22

Iterated Message Passing and Cumulative Barriers

Test WRC: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
porf

WRC Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

y=1 r3=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

That’s allowed just by thread-local reordering, so this tells us nothing. Add address
dependencies....

– p. 22

Iterated Message Passing and Cumulative Barriers

Test WRC+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf

WRC+addrs Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

*(&y+r1-r1) = 1 r3 = *(&x + r2 - r2)

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

– p. 22

Iterated Message Passing and Cumulative Barriers

Test WRC+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf

ARM and POWER are not multi-copy-atomic: the fact that a
write has become visible to some other thread does not mean
it is visible to all other threads.

– p. 22

Iterated Message Passing and Cumulative Barriers

Test WRC+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
dmb/sync

rf
addrrf

WRC+dmb/sync+addr Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

dmb/sync r3 = *(&x + r2 - r2)

y=1

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

– p. 22

Iterated Message Passing and Cumulative Barriers

Test WRC+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
dmb/sync

rf
addrrf

A dmb/sync keeps writes by the same thread (before and after
the barrier) ordered, as far as any single other thread is
concerned.

But they also keep any writes propagated to the barrier thread
(before the barrier) ordered before writes (by this thread) after
the barrier, as far as any other single thread is concerned. A
cumulativity property. Here (a,c) are ordered, as seen by
Thread 2. Microarchitecturally: ...

– p. 22

Iterated Message Passing and Cumulative Barriers

Test ISA2+dmb/sync+addr+addr: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

dmb/sync
rf

addr
rf

addr

rf

And also (a,d) are ordered, w.r.t. visibility by Thread 2.

Explain in terms of write and barrier propagation:

Writes (a) and (b) are separated by the barrier

...so for Thread 1 to read from (b), both (a) and the barrier have to propagate there, in that
order

But now (a) and (d) are separated by the barrier

...so before Thread 2 can read from (d), (a) (and the barrier) has to propagate there too

and hence (f) has to read from (a), instead of the initial state.
– p. 22

Iterated Message Passing and Cumulative Barriers
POWER ARM

Kind PowerG5 Power6 Power7 Tegra3

WRC Allow 44k/2.7G 1.2M/13G 25M/104G 8.6k/8.2M

WRC+addrs Allow 0/2.4G 225k/4.3G 104k/25G 0/20G

WRC+dmb/sync+addr Forbid 0/3.5G 0/21G 0/158G 0/20G

WRC+lwsync+addr Forbid 0/3.5G 0/21G 0/138G —

ISA2 Allow 3/91M 73/30M 1.0k/3.8M 6.7k/2.0M

ISA2+dmb/sync+addr+addr Forbid 0/2.3G 0/12G 0/55G 0/20G

ISA2+lwsync+addr+addr Forbid 0/2.3G 0/12G 0/55G —

– p. 22

Independent Reads of Independent Writes
Another illustration of non-multi-copy-atomic behaviour:
take SB

Test SB: Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

and pull out the initial writes to two other threads (and add
address dependencies to prevent local reordering)

– p. 23

Independent Reads of Independent Writes

Test IRIW+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
addr

rf
addr

rf

rf

IRIW+addrs Pseudocode

Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y

r2=*(&y+r1-r1) r4=*(&x+r3-r3)

Initial state: x=0 ∧ y=0 ∧ z=0

Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0

Like SB, this needs two DMBs or syncs (lwsyncs not enough).
– p. 23

Independent Reads of Independent Writes
Microarchitecturally:

Could arise from hierarchical store buffers

W
rite B

uffer

Thread 2 Thread 3

W
rite B

uffer

Thread 0 Thread 1

Shared Memory

Or just from the cache protocol

(is there a test that distinguishes?)

– p. 23

Storage Subsystem Semantics
Have to consider writes as propagating to each other thread

No global memory

RW

W

W

W

W
R

R

R

R W

W

W
W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

M
emory3M

em
or
y4

M
em

or
y 5

T
h
read

2

Thread3Th
rea
d4

T
h
re
ad

5

– p. 24

Weaker Barriers and Stronger Operations

– p. 25

lwsync (POWER)
Cheaper than sync (aka hwsync).

Locally orders RR, WR, and WW pairs, but not WR

Similar cumulativity properties as sync, so suffices for message-passing
(MP, WRC, ISA2).

Test MP+lwsyncs: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

lwsync
rf

lwsync

rf

Test WRC+lwsync+addr: Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
lwsync

rf
addrrf

Does not suffice to exclude SB, IRIW

Test SB+lwsyncs: Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

lwsync lwsync

rf rf

Test IRIW+lwsyncs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
lwsync

rf
lwsync

rf

rf

Model: think of sync as blocking until all previous (or previously seen)
writes have propagated everywhere, while lwsync doesn’t. – p. 26

Coherence and lwsync (or not)

The transitive closure of coherence and lwsync edges does not
guarantee ordering:

Test Z6.3+lwsync+lwsync+addr: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

lwsync
co

lwsync
rf

addrrf

The fact that the storage subsystem commits to b before c in the coherence order has no effect
on the order in which writes a and d propagate to Thread 2. Thread 1 does not read from either
Thread 0 write, so they need not be sent to Thread 1, so no cumulativity is in play. In other
words, coherence edges do not bring writes into the “Group A” of a POWER barrier.
Microarchitecturally: the coherence choice may be made later
Contrast with ISA2+lwsync+addr+addr

– p. 27

dmb st and dmb ld (ARM)

Omit for now...

– p. 28

SC loads and stores LDAR/STLR (ARM)

ISA design choice: strength in barriers or in labelled
operations?

NB: ARM call these load-acquire and store-release, but this is
confusing terminology: they are stronger than the usual
release/acquire notions. They guarantee SC — at least when
observed with these operations.

– p. 29

Operational Model (POWER)

– p. 30

Basic Question
What is the concurrency semantics of Power/ARM
processors?

We’ve built a POWER operational model...

...by a long process of

writing and generating test cases

experimental testing of hardware

talking with IBM and ARM architects

checking candidate models

(Also ARM operational models – Flowing and POP – and
various axiomatic models; see refs later)

– p. 31

Basic Idea

With a microarchitectural flavour (so can discuss with
architects and they can relate to their implementations)

But as abstract as possible: abstracting from store buffers,
cache hierarchies, cache protocols, etc.

Aiming to be architecturally sound and complete: allowing
exactly all the behaviour they intend to be allowed

Aiming to be sound w.r.t. current hardware implementations
(modulo hardware bugs)

– p. 32

Write request

Read request

Barrier request

Read response

Barrier ack

Storage Subsystem

ThreadThread

– p. 33

Storage Subsystem: Coherence by Fiat
Suppose the storage subsystem has seen 4 writes to x:

Suppose just [w1] has propagated to tid and then tid reads x.

it cannot be sent w0, as w0 is coherence-before the w1 write that (because it is in the
writes-propagated list) it might have read from;

it could re-read from w1, leaving the coherence constraint unchanged;

it could be sent w2, again leaving the coherence constraint unchanged, in which case w2

must be appended to the events propagated to tid; or

– p. 34

Storage Subsystem: Coherence by Fiat
Suppose the storage subsystem has seen 4 writes to x:

w0

w2 w3

w1

w0

w2 w3

w1

Suppose just [w1] has propagated to tid and then tid reads x.

it cannot be sent w0, as w0 is coherence-before the w1 write that (because it is in the
writes-propagated list) it might have read from;

it could re-read from w1, leaving the coherence constraint unchanged;

it could be sent w2, again leaving the coherence constraint unchanged, in which case w2

must be appended to the events propagated to tid; or

it could be sent w3, again appending this to the events propagated to tid, which moreover
entails committing to w3 being coherence-after w1, as in the coherence constraint on the
right above. Note that this still leaves the relative order of w2 and w3 unconstrained, so
another thread could be sent w2 then w3 or (in a different run) the other way around (or
indeed just one, or neither). – p. 34

Model States
Storage subsystem:

thread ids (set)

writes seen (set)

coherence (strict partial order over writes, per-address)

writes past coherence point (set)

events propagated to each thread (list of writes and
barriers)

Thread:

initial register state

tree of committed and in-flight instructions

unacknowledged sync/dmb barriers

– p. 35

Sample Transition Rule
Propagate write to another thread (a τ transition)
The storage subsystem can propagate a write w (by thread tid)
that it has seen to another thread tid′, if:

the write has not yet been propagated to tid′;

w is coherence-after any write to the same address that
has already been propagated to tid′; and

all barriers that were propagated to tid before w (in
s.events propagated to (tid)) have already been
propagated to tid′.

Action: append w to s.events propagated to (tid′).

Explanation: This rule advances the thread tid
′ view of the coherence order

to w, which is needed before tid
′ can read from w, and is also needed before

any barrier that has w in its “Group A” can be propagated to tid
′.

– p. 36

DEMO

http://www.cl.cam.ac.uk/~pes20/ppcmem/

– p. 37

http://www.cl.cam.ac.uk/~pes20/ppcmem/

Systematic Test Families

– p. 38

Periodic table
www.cl.cam.ac.uk/users/pes20/ppc-supplemental/poster1.pdf

Systematic arrangement of small test shapes:

critical cycles of po, rf, co, and fr edges
(recall rf from initial state = fr from co-first write)

the six 4-edge 2-thread 2-location tests (MP, S; SB, R, 2+2W; LB)

5- and 6-edge extensions pulling writes out along new rf edges
(including WRC, IRIW, WRC)

the ten 6-edge 3-thread tests (including ISA2, Z6.3)

the five minimal coherence tests

a few ad hoc tests

– p. 39

www.cl.cam.ac.uk/users/pes20/ppc-supplemental/poster1.pdf

Minimal Strengthenings for a Test Shape
For each shape, consider the weakest replacements of po edges by dependencies or barriers
that forbid the non-SC behaviour, e.g. for MP:

RRdep ::= addr | ctrlisb/ctrlisync

RWdep ::= addr | data | ctrl | ctrlisb/ctrlisync

po < {RRdep,RWdep} < lwsync < dmb/sync (ignoring “might”)

MP+sync+po

MP+sync+ctrlisync MP+sync+addr

MP+sync+isync

MP+sync+lwsync

MP+sync+ctrl

MP+po+sync

MP+lwsync+sync

MP+isync+sync

MP+po+lwsync

MP+lwsyncs

MP+isync+lwsync

MP+po+isync

MP+lwsync+isync

MP+po+ctrl

MP+lwsync+ctrl

MP+isyncs MP+isync+po

MP+isync+ctrlisync MP+isync+addrMP+lwsync+po

MP+isync+ctrl MP

MP+po+ctrlisync MP+po+addr

MP+lwsync+ctrlisync MP+lwsync+addr

MP+syncs

– p. 40

Atomic operations:

lwarx/stwcx and LDREX/STREX

– p. 41

Load-reserve/Store-conditional
aka Load-linked/Store-conditional

Analogue of x86 LOCK’d INC etc. and CMPXCHG (CAS), but
RISC-friendly

lwarx/LDREX atomically (a) loads, and (b) creates a
reservation for this “storage granule” (POWER terminology:
architectural abstraction of implementation “cache line”)

stwcx/STREX atomically (a) stores and (b) sets a flag, if the
storage granule hasn’t been written to by any thread in the
meantime

Can be used to implement CAS, atomic add, spinlocks, . . .

Universal (like CAS) [Herlihy’93] (and no ABA problem)

– p. 42

Atomic addition using lwarx/stwcx

Atomic Addition

loop:

lwarx r, d

add r,v,r

stwcx r, d

bne loop

Informally, stwcx succeeds only if no other write to the
same address since last lwarx, setting a flag iff it succeeds

(though it may spontaneously fail)

– p. 43

What is no write since . . . ?

In machine time?
Neither necessary, nor sufficient

Microarchitecturally (simplified): if cache-line ownership
not lost since last lwarx

(but we don’t want to model the microarchitecture...)

– p. 44

Modeling “not lost since”

Abstractly: ownership chain modeled by building up
coherence order

Coherence: order relating stores to the same location
(eventually linear)

A stwcx succeeds only if it is (or at least, if it can become)
coherence-next-to the write read from by lwarx

. . . and no other write can later come in between

– p. 45

Modeling “not lost since”

Abstractly: ownership chain modeled by building up
coherence order

Coherence: order relating stores to the same location
(eventually linear)

A stwcx succeeds only if it is (or at least, if it can become)
coherence-next-to the write read from by lwarx

. . . and no other write can later come in between

Isolate key concept: write reaching coherence point —
coherence is linear below this write, and no new
edges will be added below

– p. 45

Coherence points and a successful stwcx

Atomic Addition

loop:

lwarx r, x

add r,3,r

stwcx r, x

bne loop

Coherence order for x:

b:W x=3a:W x=2

i:W x=0 j:W x=1

c:W x=4

Suppose lwarx reads from the
“a:W x:2”

– p. 46

Coherence points and a successful stwcx

Atomic Addition

loop:

lwarx r, x

add r,3,r

stwcx r, x

bne loop

Coherence order for x:

b:W x=3a:W x=2

i:W x=0 j:W x=1

c:W x=4

Suppose lwarx reads from the
“a:W x:2”

stwcx can succeed if this becomes possible:

writes that have reached coherence point

i:W x=0 j:W x=1 a:W x=2 d:W∗ x=5

c:W x=4

b:W x=3

Warning: stwcx can fail spuriously
– p. 46

Load-reserve/store-conditional and ordering
Same-thread load-reserve/store-conditionals ordered by
program order

If all memory accesses are l-r/s-c sequences
Then: only SC behaviour

But . . . normal loads/stores (to different addresses) not
ordered; the l-r/s-c do not act as a barrier

Confusion here led to Linux bug
. . . bad barrier placement in atomic-add-return

– p. 47

Misaligned and mixed-size accesses
Each architecture guarantees that certain combinations of
access size and alignment will be indivisible (typically 2n-size
2n-aligned for some particular n’s). [“single-copy atomicity”]

Others may, architecturally, be split into multiple byte-size
accesses, though implementations typically split less.

– p. 48

Can the bytes of the 2-byte write of a STRH, if misaligned 1 byte
off a cache-line boundary, be separately propagated to
another thread?
AArch64 MP+misaligned2+127+addr

{

uint8_t x[256]; (* two cache lines *)

0:X5=x;

0:X0=127;

0:X11=0x1122;

1:X5=x;

}

P0 | P1 ;

STRH W11,[X5,X0] (* *(&x+127)=(0x22,0x11) *) | LDRB W1,[X5,#128] (* W1 = *(&x+128) *) ;

| EOR W3,W1,W1 (* W3 = W1 xor W1 *) ;

| ADD W4,W3,#127 ;

| LDRB W2,[X5,X4] (* W2 = *(&x+127+W3) *) ;

exists (1:X1=0x11 /\ 1:X2=0)

– p. 49

Test MP+misaligned2+127+addr

init:W x/256=0

i3:STRH W11, [X5, X0]

a0:W x+127/1=0x22

a1:W x+128/1=0x11

i7:LDRB W2, [X5, X4]

c:R x+127/1 = 0

Thread 0

i4:LDRB W1, [X5, #128]

b:R x+128/1 = 0x11

Thread 1

i5:EOR W3, W1, W1

i6:ADD W4, W3, #127

co

co

rf[0-0,0,127]

rf[0-0,0x11,0]

– p. 50

Testing alignments w.r.t. a cache line

Test flowing pop LG-H955

MP+misaligned2+0+addr.litmus forbidden forbidden 0/224M

MP+misaligned2+1+addr.litmus allowed allowed 0/20M

MP+misaligned2+3+addr.litmus allowed allowed 0/20M

MP+misaligned2+7+addr.litmus allowed allowed 0/220M

MP+misaligned2+15+addr.litmus allowed allowed 0/220M

MP+misaligned2+127+addr.litmus allowed allowed 20/222M

MP+misaligned8+124+addr.litmus interactive allowed 21/80M

LG-H955 phone: Snapdragon 810, Cortex-A57/A53

– p. 51

MP+misaligned2+0+addr.litmus
MP+misaligned2+1+addr.litmus
MP+misaligned2+3+addr.litmus
MP+misaligned2+7+addr.litmus
MP+misaligned2+15+addr.litmus
MP+misaligned2+127+addr.litmus
MP+misaligned8+124+addr.litmus

More mixed-size questions
splitting misaligned reads

overlapping atomic writes

footprint topology and coherence per-write or per-byte

coherence: local reordering of disjoint reads

coherence: propagation of non-coherence-superseded write slices

forwarding from uncommitted writes

dependency granularity via parts of system registers

dependencies via load/store writeback register

speculation of LR register valeus

load/store multiple

computed register footprints

ARM conditional instructions

– p. 52

ISA semantics and ISA/concurrency

integration

– p. 53

What does an ISA look like?

– p. 54

Problem 1: Scale

100s of instructions, some fiddly

changing (slowly) over time

want to maintain clear connection to vendor docs

want engineer-accessibility

– p. 55

��

�
�
�
�

�
�
�
�

Power 2.06B
Framemaker

Power 2.06B
XML

Sail
Power 2.06B

Power 2.06B
Lem (Sail AST)

Sail interpreter
Lem

Sail typecheck

parse, analyse, patch

ISA model

IBM

Gray, Kerneis, Pulte

– p. 56

��

�
�
�
�

�
�
�
�

Power 2.06B
Framemaker

Power 2.06B
XML

Sail
Power 2.06B

Power 2.06B
Lem (Sail AST)

Sail interpreter
Lem

Sail typecheck

parse, analyse, patch

ISA model

IBM

Gray, Kerneis, Pulte

union ast member (bit[5],bit[5],bit[14]) Stdu

function clause decode

(0b111110 : (bit[5]) RS : (bit[5]) RA

: (bit[14]) DS : 0b01 as instr) =

Stdu (RS,RA,DS)

function clause execute (Stdu (RS, RA, DS)) =

{ EA := GPR[RA] + EXTS (DS : 0b00);

MEMw(EA,8) := GPR[RS];

GPR[RA] := EA } – p. 57

Problem 2: What Does It Mean?

function clause execute (Stdu (RS, RA, DS)) =

{ EA := GPR[RA] + EXTS (DS : 0b00);

MEMw(EA,8) := GPR[RS];

GPR[RA] := EA }

For sequential machine: run the micro-ops of each instruction
in turn, sequentially, updating a shared memory state and
thread-local register state

For SC or TSO multiprocessor: similar, interleaving

But ARM and Power? Observably out-of-order, speculative,
non-multi-copy atomic, non-atomic intra-instruction semantics,
dependency-sensitive

– p. 58

����

������

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Power 2.06B
Framemaker

Power 2.06B
XML

Sail
Power 2.06B

Power 2.06B
Lem (Sail AST)

semantics
Thread

Lem

semantics
Storage

Lem

semantics
System

Lem

Sail interpreter
Lem

Sail typecheck

parse, analyse, patch

ISA model

Sarkar, Sewell (adapting PLDI11, SSAMW)

Concurrency model

IBM

Gray, Kerneis, Pulte

– p. 59

ISA / Concurrency Interface

type instruction_state

val interp : instruction_state -> outcome

type outcome =

| Barrier of barrier_kind * instruction_state

| Read_mem of read_kind * address_lifted * nat

* (memory_value -> instruction_state)

| Write_mem of write_kind * address_lifted * nat * memory_value

* (bool -> instruction_state)

| Read_reg of reg_name * (register_value -> instruction_state)

| Write_reg of reg_name * register_value * instruction_state

| ...

– p. 60

��
��

�
�
�
�

������
������

��

�
�
�
�

�
�
�

�
�
�

�
�
�
�Power 2.06B

Framemaker

Power 2.06B
XML

Sail
Power 2.06B

Power 2.06B
Lem (Sail AST)

semantics
Thread

Lem

semantics
Storage

Lem

semantics
System

Lem

Binary frontend
Mulligan, Kell, Gray

ELF model
Lem

Syscall interface

OCaml, CSS, JS

Harness

Text UI
Web UI

Sarkar, Sewell (adapting ppcmem)

a.out

Sail interpreter
Lem

Sail typecheck

parse, analyse, patch

ISA model

Sarkar, Sewell (adapting PLDI11, SSAMW)

Litmus frontend
Kerneis, Sarkar (above diy/litmus, AM)

OCaml
Litmus parser

Concurrency model

test.litmus

IBM

Gray, Kerneis, Pulte

– p. 61

Demo
MP+dmb/sync+ctrl

Thread 0 Thread 1

x=1 r1=y

dmb/sync if (r1 == 1) {

y=1 r2=x }

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrl

rf

P0 | P1 ;

stw r7,0(r1) | lwz r5,0(r2) ;

sync | cmpw r5,r7 ;

stw r8,0(r2) | beq L ;

| L: ;

| lwz r4,0(r1) ;

– p. 62

ARM
Testing
Performance
...

– p. 63

“Architectural Emulator”?
System that takes a machine program and gives you all
architecturally allowed behaviours

– p. 64

“Architectural Emulator”?
System that takes a machine program and gives you all
architecturally allowed behaviours

Either:

interactively

exhaustively (for small programs!)

pseudorandomly (but complete in the limit)

For use as a test oracle for testing h/w, and for testing s/w.

– p. 64

“Architectural Emulator”?
System that takes a machine program and gives you all
architecturally allowed behaviours

Preferably embodying an architecture definition that also
serves:

for informal communication — engineer-accessible

for proof — mathematically precise

– p. 64

No Single Program Point

MP+dmb/sync+ctrl

Thread 0 Thread 1

x=1 r1=y

dmb/sync if (r1 == 1) {

y=1 r2=x }

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread

d: R[x]=0

dmb/sync
rf

ctrl

rf

– p. 65

No Single Program Point

MP+dmb/sync+ctrl

Thread 0 Thread 1

x=1 r1=y

dmb/sync if (r1 == 1) {

y=1 r2=x }

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread

d: R[x]=0

dmb/sync
rf

ctrl

rf

Hence: we must maintain a list or tree of in-flight instructions

– p. 65

No Collected Register State

MP+dmb/sync+rs

Thread 0 Thread 1

x=1 r3=y

dmb/sync r1=r3

y=1 r3 = x

Allowed: 1:r1=1 ∧ 1:r3=0

Hence: for a register read, we must walk back through its
program-order predecessors to find the most recent that might
write to that register (and block if it hasn’t yet)

We assume each instruction has a determined register
read+write footprint (calculate with exhaustive interpreter) and
that it writes exactly once to each in the write footprint (eyeball
check).

– p. 66

Reading from uncommitted instructions

...instructions have to be able to read from register writes of
uncommitted program-order-previous instructions

...and they also have to be able to read from memory writes of
uncommitted program-order-previous instructions
(cf PPOCA, observable on Power and ARM)

– p. 67

Non-atomic intra-instruction semantics for register reads

LB+datas+WW

Thread 0 Thread 1

a: r1=x d: r2=z

b: y=r1 e: a=r2

c: z=1 f: x=1

Initial state: x=0 ∧ z=0

Allowed: r1=1 ∧ r2=1 Test LB+datas+WW: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: W[z]=1

d: R[z]=1

Thread 1

e: W[a]=1

f: W[x]=1

data

po
rf

data
rf

po

function clause execute (Stdu (RS, RA, DS)) =

{ EA := GPR[RA] + EXTS (DS : 0b00);

MEMw(EA,8) := GPR[RS];

GPR[RA] := EA }

...calculate might-access-same-address using exhaustive
interpreter

– p. 68

Register Granularity Matters

entire registers (including the flags register as a single
entity)?

the 4-bit subfields of the Power CR flags register?

individual bits?

– p. 69

Commit Atomicity?

We used to assume that an in-flight instruction commits when
it’s finished, and at that point all writes and barriers become
visible to the storage subsystem.

But:
function clause execute (Stdu (RS, RA, DS)) =

{ EA := GPR[RA] + EXTS (DS : 0b00);

MEMw(EA,8) := GPR[RS];

GPR[RA] := EA }

Now assume an instruction has at most one memory read,
write, or barrier. Its micro-ops are executed in-order, and
might be committed when it reaches a write or barrier. Then
finished later.

– p. 70

Load/store Multple?

Rewrite to have a single (wide) read or write in Sail.

Plan to have surrounding plumbing split that up into multiple
memory writes for storage subsystem.

(sound w.r.t. out-of-order execution after a partially executed
load-multiple?)

– p. 71

Execution Past a Conditional Branch
In beq target pseudocode, NIA is calculated after the register
reads that determine whether the branch is taken, but the h/w
can speculate in either direction before those values are
available.

function clause execute (Bc (BO, BI, BD, AA, LK)) =

{ if mode64bit then M := 0 else M := 32;

if ~ (BO[2]) then CTR := CTR - 1 else ();

ctr_ok := (BO[2] | (CTR[M .. 63] != 0) ^ BO[3]);

cond_ok := (BO[0] | CR[BI + 32] ^ ~ (BO[1]));

if ctr_ok & cond_ok then

if AA then

NIA:=EXTS(BD:0b00)

else

NIA:=CIA+EXTS(BD:0b00)

else

();

– p. 72

Computed Branch Speculation?

function clause execute (Bclr (BO, BI, BH, LK)) =

{

if mode64bit then M := 0 else M := 32;

if ~ (BO[2]) then CTR := CTR - 1 else ();

ctr_ok := (BO[2] | (CTR[M .. 63] != 0) ^ BO[3]);

cond_ok := (BO[0] | CR[BI + 32] ^ ~ (BO[1]));

if ctr_ok & cond_ok then NIA := LR[0..61]:0b00 else ();

if LK then LR := CIA + 4 else ()

}

– p. 73

	POWER and ARM
	Operational Models, Overview
	Features
	Coherence
	Maintaining Coherence in hardware
	Thread Semantics
	Message Passing (MP) Again
	Message Passing (MP)
Again
	Message Passing (MP)
Again

	Enforcing Order with Barriers
	Enforcing Order with Barriers

	Enforcing Order with Dependencies
	Enforcing Order with Dependencies
	Enforcing Order with Dependencies
	Enforcing Order with Dependencies

	Enforcing Order with Dependencies
	Programmer-visible shadow registers
	Pipeline write forwarding: PPOAA/PPOCA
	Pipeline write forwarding: PPOAA/PPOCA

	Aggressively out-of-order reads (extsf {RSW}/	extsf {RDW})
	Aggressively out-of-order reads (extsf {RSW}/	extsf {RDW})

	Observable Read-request Buffering
	Load Buffering (LB)
	Load Buffering (LB)
	Load Buffering (LB)
	Load Buffering (LB)

	Might-access-same-address
	Might-access-same-address

	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers

	Independent Reads of Independent Writes
	Independent Reads of Independent Writes
	Independent Reads of Independent Writes

	Storage Subsystem Semantics
	asm {lwsync} (POWER)
	Coherence and asm {lwsync} (or not)
	asm {dmb st} and asm {dmb ld} (ARM)
	SC loads and stores asm {LDAR}/asm {STLR} (ARM)
	Basic Question
	Basic Idea
	Storage Subsystem: Coherence by Fiat
	Storage Subsystem: Coherence by Fiat

	Model States
	Sample Transition Rule
	DEMO
	Periodic table
	Minimal Strengthenings for a Test Shape
	Load-reserve/Store-conditional
	Atomic addition using asm {lwarx}/asm {stwcx}
	What emph {is} no write since ldots ?
	Modeling ``not lost since''
	Modeling ``not lost since''

	Coherence points and a successful stwcx
	Coherence points and a successful stwcx

	Load-reserve/store-conditional and ordering
	Misaligned and mixed-size accesses
	Testing alignments w.r.t.~a cache line
	More mixed-size questions
	What does an ISA look like?
	Problem 1: Scale
	Problem 2: What Does It Mean?
	ISA / Concurrency Interface
	Demo
	``Architectural Emulator''?
	``Architectural Emulator''?
	``Architectural Emulator''?

	No Single Program Point
	No Single Program Point

	No Collected Register State
	Reading from uncommitted instructions
	Non-atomic intra-instruction semantics for register reads
	Register Granularity Matters
	Commit Atomicity?
	Load/store Multple?
	Execution Past a Conditional Branch
	Computed Branch Speculation?

