
Tests and Testing

– p. 1

‘Empirical Science of the Artificial’

Treating these human-made artifacts as objects of empirical
science

In principle (modulo manufacturing defects): their structure
and behaviour are completely known.

In practice: the structure is too complex for anyone to fully
understand, the emergent behaviour is not well-understood,
and there are commercial confidentiality issues.

– p. 2

Litmus Testing

Initial state: x=0 and y=0
Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

– p. 3

Litmus Testing

Initial state: x=0 and y=0
Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

Step 1: Get the compiler out of the way, writing tests in
assembly: SB.litmus:
X86 SB ""
{x = 0; y = 0};

P0 | P1 ;
mov [x], 1 | mov [y], 1 ;
mov EAX, [y] | mov EBX, [x] ;

exists (P0:EAX = 0 /\ P1:EBX = 0);

– p. 3

Litmus Testing
Step 2: Want to run that test

starting in a wide range of the processor’s internal states
(cache-line states, store-buffer states, pipeline states, ...),

with the threads roughly synchronised, and

with a wide range of timing and interfering activity.

Our litmus tool takes a test and compiles it to a program (C
with embedded assembly) that does that.

Basic idea: have an array for each location (x, y) and the
observed results; run many instances of test in a randomised
order.

First version: Braibant, Sarkar, Zappa Nardelli [x86-CC,
POPL09]. Now mostly Maranget: [TACAS11]

– p. 4

Litmus Testing
Download litmus:
http://diy.inria.fr/sources/litmus.tar.gz

Untar, edit the Makefile to set the install PREFIX (e.g. to the
untar’d directory).

make all (needs OCaml) and make install

./litmus -mach corei7.cfg testsuite/X86/SB.litmus

Docs at http://diy.inria.fr/doc/litmus.html

More tests on course web page.

– p. 5

http://diy.inria.fr/sources/litmus.tar.gz
http://diy.inria.fr/doc/litmus.html

Litmus Output (1/2)
%%

% Results for ../../../sem/WeakMemory/litmus.new/x86/SB.litmus %

%%

X86 SB

"Loads may be reordered with older stores to different locations"

{x=0; y=0;}

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EBX,[x] ;

exists (0:EAX=0 /\ 1:EBX=0)

Generated assembler

#START _litmus_P1

movl $1,(%rdi,%rcx)

movl (%rdx,%rcx),%eax

#START _litmus_P0

movl $1,(%rsi,%rdx)

movl (%rdi,%rdx),%eax

– p. 6

Litmus Output (2/2)
Test SB Allowed

Histogram (4 states)

11 *>0:EAX=0; 1:EBX=0;

499985:>0:EAX=1; 1:EBX=0;

499991:>0:EAX=0; 1:EBX=1;

13 :>0:EAX=1; 1:EBX=1;

Ok

Witnesses

Positive: 11, Negative: 999989

Condition exists (0:EAX=0 /\ 1:EBX=0) is validated

Hash=d907d5adfff1644c962c0d8ecb45bbff

Observation SB Sometimes 11 999989

Time SB 0.17

...and logging /proc/cpuinfo, litmus options, and gcc options

Good practice: the litmus file condition identifies a particular outcome of interest (often enough to
completely determine the reads-from and coherence relations of an execution), but does not say
whether that outcome is allowed or forbidden in any particular model; that’s kept elsewhere.

– p. 7

What’s a Test?
Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

– p. 8

What’s a Test?
Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

In the operational model, is there a trace

〈t0 : 〈x = 1; r0 = y, R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉
l1−→ . . .

ln
−→

〈t0 : 〈skip, R′

0
〉|t1 : 〈skip, R′

1
〉, M ′〉

such that R′

0
(r0) = 0 and R′

1
(r1) = 0 ?

– p. 8

Candidate Execution Diagrams
That final condition identifies a set of executions, with
particular read and write events; we can abstract from the
threadwise semantics and just draw those:

Test SB

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

in these diagrams, the events are organised by threads, we elide the
thread ids, but we give each event a unique id a, b,

we draw program order (po) edges within each thread;

we draw reads-from (rf) edges from each write (or a red dot for the
initial state) to all reads that read from it;

– p. 9

Coherence

Conventional hardware architectures guarantee coherence:

in any execution, for each location, there is a total order
over all the writes to that location, and for each thread the
order is consistent with the thread’s program-order for its
reads and writes to that location; or (loosely)

in any execution, for each location, the execution
restricted to just the reads and writes to that location is
SC.

In simple hardware implementations, that’s the order in which
the processors gain write access to the cache line.

– p. 10

From-reads
Given that, we can think of a read event as “before” the
coherence-successors of the write it reads from.

b:tj:W x = 2

c:tk:W x = 3

d:tr:R x = 1

a:ti:W x = 1

co

co

fr

fr

co

co

rf

– p. 11

From-reads
Given that, we can think of a read event as “before” the
coherence-successors of the write it reads from.

Given a candidate execution with a coherence order co over
the writes to x, and a reads-from relation rf from writes to x to
the reads that read from them, define the from-reads relation
fr to relate each read to the co-successors of the write it reads
from (or to all writes to x if it reads from the initial state).

r
fr
−→ w iff (∃w0. w0

co
−→ w ∧ w0

rf
−→ r) ∨

(¬∃w0. w0

rf
−→ r)

(co is an irreflexive transitive relation)

– p. 11

The SB cycle

Test SB

a: W[x]=1

b: R[y]=0

c: W[y]=1

d: R[x]=0

Thread 0 Thread 1

po po
frfr

A more abstract characterisation of why this execution is
non-SC?

– p. 12

Candidate Executions, more precisely
Forget the memory states Mi and focus just on the read and write events.
Give them ids a, b, . . . (unique within an execution): a : t : Rx=n and
a : t : Wx=n.
Say a candidate pre-execution E consists of

a finite set E of such events

program order (po), an irreflexive transitive relation over E

[intuitively, from a control-flow unfolding and choice of arbitrary memory read values of the

source program]

Say a candidate execution witness for E, X, consists of with

reads-from (rf), a relation over E relating writes to the reads that read
from them (with same address and value)
[note this is intensional: it identifies which write, not just the value]

coherence (co), an irreflexve transitive relation over E relating only
writes that are to the same address; total when restricted to the writes
of each address separately
[intuitively, the hardware coherence order for each address] – p. 13

SC, said differently again: pre-executions
Say a candidate pre-execution E is SC-L if there exists a total
order SC over all its events such that for all read events
er = (a : t : Rx=n) ∈ E, either n is the value of the most
recent (w.r.t. SC) write to x, if there is one, or 0, otherwise.

Theorem 1 (?) E is SC-L iff there exists a trace ~l ∈ traces(M0)

of M0 such that the events of E are the labels of ~l (with a
choice of unique id for each) and po is the union of the order of
~l restricted to each thread.

Say a candidate pre-execution E is consistent with the
threadwise semantics of process P if there exists a trace
~l ∈ traces(P) of P such that the events of E are the labels of ~l

(with a choice of unique id for each) and po is the union of the
order of ~l restricted to each thread.

– p. 14

SC, said differently again: “Axiomatically”

Say a candidate pre-execution E and execution witness X are
SC-A if

acyclic(po ∪ rf ∪ co ∪ fr)

Theorem 2 (?) E is SC-L iff there exists an execution witness
X (satisfying the well-formedness conditions of the
last-but-one slide) such that E, X is SC-A.

This characterisation of SC is existentially quantifying over
irrelevant order...

– p. 15

How to generate good tests?
hand-crafted test programs [RAPA, Collier]

hand-crafted litmus tests

exhaustive or random small program generation

from executions that (minimally?) violate
acyclic(po ∪ rf ∪ co ∪ fr)

...given such an execution, construct a litmus test
program and final condition that picks out that execution

[diy tool of Alglave and Maranget, Alglave, Maranget,
Sarkar, Sewell, CAV2010
(http://diy.inria.fr/doc/gen.html);
Shasha and Snir, TOPLAS 1988]

systematic families of those (see periodic table, later)

Accumulated library of 1000’s of litmus tests. – p. 16

http://diy.inria.fr/doc/gen.html

How to compare test results and models?
Need model to be executable as a test oracle: given a litmus
test, want to compute the set of all results the model permits.

Then compare that set with the set of all results observed
running test (with litmus harness) on actual hardware.

model experiment conclusion
Y Y
Y – model is looser (or testing not aggressive)
– Y model not sound (or hardware bug)
– –

– p. 17

The SC semantics as executable test oracles
Given P, either:

1. enumerate entire graph of 〈P , M0〉 transition system

(maybe with some partial-order reduction), or

2. (a) enumerate all pre-executions E, by enumerating
entire graph of P threadwise semantics transition
system;

(b) for each E, enumerate all pairs of relations over the
events (for rf and co, to make a well-formed execution
witness X); and

(c) discard those that don’t satisfy the SC-A acyclicity
predicate of E, X.

(actually for (2a), use an inductive-on-syntax characterisation of the set of all pre-executions of a
process)

– p. 18

These are operational and axiomatic styles of defining relaxed
memory models.

– p. 19

References
Reasoning About Parallel Architectures (RAPA), William W. Collier,
Prentice-Hall, 1992. http://www.mpdiag.com

The Semantics of x86-CC Multiprocessor Machine Code. Sarkar,
Sewell, Zappa Nardelli, Owens, Ridge, Braibant, Myreen, Alglave.
POPL 2009

A Better x86 Memory Model: x86-TSO. Owens, Sarkar, Sewell.
TPHOLs 2009.

Fences in Weak Memory Models. Alglave, Maranget, Sarkar, Sewell.
CAV 2010.

Reasoning about the Implementation of Concurrency Abstractions on
x86-TSO. Scott Owens. ECOOP 2010.

x86-TSO: A Rigorous and Usable Programmer’s Model for x86
Multiprocessors, Sewell, Sarkar, Owens, Zappa Nardelli, Myreen.
Communications of the ACM (Research Highlights) 2010 No.7.

Litmus: Running Tests Against Hardware. Alglave, Maranget, Sarkar,
Sewell. TACAS 2011 (Tool Demonstration Paper). – p. 20

http://www.mpdiag.com

	`Empirical Science of the Artificial'
	Litmus Testing
	Litmus Testing

	Litmus Testing
	Litmus Testing
	Litmus Output (1/2)
	Litmus Output (2/2)
	What's a Test?
	What's a Test?

	Candidate Execution Diagrams
	Coherence
	From-reads
	From-reads

	The SB cycle
	Candidate Executions, more precisely
	SC, said differently again: pre-executions
	SC, said differently again: ``Axiomatically''
	How to generate good tests?
	How to compare test results and models?
	The SC semantics as executable test oracles
	References

