
x86

– p. 1

A Cautionary Tale
Intel 64/IA32 and AMD64 - before Aug. 2007 (Era of Vagueness)

‘Processor Ordering’ model,
informal prose

Example: Linux Kernel mail-
ing list, Nov–Dec 1999 (143
posts)

Keywords: speculation, or-
dering, cache, retire, causal-
ity

A one-instruction program-
ming question, a microarchi-
tectural debate!

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin unlock
optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code,
to 1 tick for a simple "movl $0,%0" instruction, a huge gain. Later,
he reported that Ingo Molnar noticed a 4% speed-up in a bench-
mark test, making the optimization very valuable. Ingo also
added that the same optimization cropped up in the FreeBSD
mailing list a few days previously. But Linus Torvalds poured cold
water on the whole thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster
timings. They will crash, eventually.
The window may be small, but if you do this, then sud-
denly spinlocks aren’t reliable any more.
The issue is not writes being issued in-order (although

– p. 2

Resolved only by appeal to
an oracle:

that the piplines are no longer invalid and the buffers
should be blown out.
I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD people
must still be on older Pentium hardware and that’s why
they don’t know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel,
also replied to Linus, pointing out a possible misconception
his proposed exploit. Regarding the code Linus posted, Er
replied:

It will always return 0. You don’t need "spin un-

lock()" to be serializing.
The only thing you need is to make sure there is a
store in "spin unlock()", and that is kind of true by
the fact that you’re changing something to be observ-
able on other processors.
The reason for this is that stores can only possibly
be observed when all prior instructions have retired
(i.e. the store is not sent outside of the processor until
it is committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:
Since the instructions for the store in the spin unlock

– p. 3

IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose
principles, e.g.

P1. Loads are not reordered with older loads
P2. Stores are not reordered with older stores

supported by 10 litmus tests illustrating allowed or forbidden
behaviours, e.g.

Message Passing (MP)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV EAX←[y] (read y=1)

MOV [y]←1 (write y=1) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 1:EAX=1 ∧ Thread 1:EBX=0

– p. 4

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

– p. 5

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Store Buffer (SB)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 5

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

– p. 6

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 6

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

– p. 7

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

Microarchitecturally plausible? yes, e.g. with shared store
buffers

W
rite B

uffer

Thread 1 Thread 3

W
rite B

uffer

Thread 0 Thread 2

Shared Memory – p. 7

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

AMD3.14: Allowed

IWP: ???

Real hardware: unobserved

Problem for normal programming: ?

Weakness: adding memory barriers does not recover SC,
which was assumed in a Sun implementation of the JMM

– p. 7

Problem 2: Ambiguity

P1–4. ...may be reordered with...

P5. Intel 64 memory ordering ensures transitive visibility of
stores — i.e. stores that are causally related appear to
execute in an order consistent with the causal relation

Write-to-Read Causality (WRC) (Litmus Test 2.5)
Thread 0 Thread 1 Thread 2

MOV [x]←1 (W x=1) MOV EAX←[x] (R x=1) MOV EBX←[y] (R y=1)

MOV [y]←1 (W y=1) MOV ECX←[x] (R x=0)

Forbidden Final State: Thread 1:EAX=1 ∧ Thread 2:EBX=1

∧ Thread 2:ECX=0

– p. 8

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’, if one
reads ‘ordered’ as referring to a single per-execution partial
order.

(can see allowed in store-buffer microarchitecture)

– p. 9

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

In the view of Thread 0:
a→b by P4: Reads may [...] not be reordered with older writes to the same location.
b→c by P1: Reads are not reordered with other reads.
c→d, otherwise c would read 2 from d
d→e by P3. Writes are not reordered with older reads.
so a:Wx=1 → e:Wx=2

But then that should be respected in the final state, by P6: In a multiprocessor system, stores to

the same location have a total order, and it isn’t.

(can see allowed in store-buffer microarchitecture) – p. 9

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

So spec unsound (and also our POPL09 model based on it).

– p. 9

Intel SDM and AMD64, Nov. 2008 – Oct. 2015

Intel SDM rev. 29–55 and AMD 3.17–3.25

Not unsound in the previous sense

Explicitly exclude IRIW, so not weak in that sense. New
principle:

Any two stores are seen in a consistent order by
processors other than those performing the stores

But, still ambiguous, and the view by those processors is left
entirely unspecified

– p. 10

Intel:
http://www.intel.com/content/www/us/en/processors/architectures-so

(rev. 35 on 6/10/2010, rev. 55 on 3/10/2015).
See especially SDM Vol. 3A, Ch. 8, Sections 8.1–8.3

AMD:
http://developer.amd.com/Resources/documentation/guides/Pages/defa

(rev. 3.17 on 6/10/2010, rev. 3.25 on 3/10/2015).
See especially APM Vol. 2, Ch. 7, Sections 7.1–7.2

– p. 11

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx

Inventing a Usable Abstraction
Have to be:

Unambiguous

Sound w.r.t. experimentally observable behaviour

Easy to understand

Consistent with what we know of vendors intentions

Consistent with expert-programmer reasoning

Key facts:

Store buffering (with forwarding) is observable

IRIW is not observable, and is forbidden by the recent
docs

Various other reorderings are not observable and are
forbidden

These suggest that x86 is, in practice, like SPARC TSO. – p. 12

x86-TSO Abstract Machine

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

– p. 13

x86-TSO Abstract Machine

As for Sequential Consistency, we separate the programming
language (here, really the instruction semantics) and the
x86-TSO memory model.

(the memory model describes the behaviour of the stuff in the
dotted box)

Put the instruction semantics and abstract machine in
parallel, exchanging read and write messages (and
lock/unlock messages).

– p. 14

x86-TSO Abstract Machine: Interface
Labels
l ::= t:W x=v a write of value v to address x by thread t

| t:R x=v a read of v from x by t

| t:τ an internal action of the thread
| t:τ x=v an internal action of the abstract machine,

moving x = v from the write buffer on t to
shared memory

| t:B an MFENCE memory barrier by t

| t:L start of an instruction with LOCK prefix by t

| t:U end of an instruction with LOCK prefix by t

where

t is a hardware thread id, of type tid,

x and y are memory addresses, of type addr

v and w are machine words, of type value – p. 15

x86-TSO Abstract Machine: Machine States

An x86-TSO abstract machine state m is a record

m : 〈[M : addr→ value;

B : tid→ (addr× value) list;
L : tid option]〉

Here:

m.M is the shared memory, mapping addresses to values

m.B gives the store buffer for each thread, most recent at
the head

m.L is the global machine lock indicating when a thread
has exclusive access to memory

Write m0 for the initial state with m.M = M0, s.B empty for all
threads, and m.L = None (lock not taken). – p. 16

x86-TSO Abstract Machine: Auxiliary Definitions

Say there are no pending writes in t’s buffer m.B(t) for
address x if there are no (x, v) elements in m.B(t).

Say t is not blocked in machine state s if either it holds the
lock (m.L = SOME t) or the lock is not held (m.L = NONE).

– p. 17

x86-TSO Abstract Machine: Behaviour

RM: Read from memory

not blocked(m, t)

m.M (x) = v

no pending(m.B(t), x)

m
t:R x=v
−−−−−−→ m

Thread t can read v from memory at address x if t is

not blocked, the memory does contain v at x, and

there are no writes to x in t ’s store buffer.

– p. 18

x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not blocked(m, t)

∃b1 b2. m.B(t) = b1 ++[(x , v)] ++b2

no pending(b1, x)

m
t:R x=v
−−−−−−→ m

Thread t can read v from its store buffer for address x

if t is not blocked and has v as the newest write to x

in its buffer;

– p. 19

x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

m
t:W x=v
−−−−−−→

m ⊕ 〈[B := m.B ⊕ (t 7→ ([(x , v)] ++m.B(t)))]〉

Thread t can write v to its store buffer for address x at

any time;

– p. 20

x86-TSO Abstract Machine: Behaviour

WM: Write from write buffer to memory

not blocked(m, t)

m.B(t) = b ++[(x , v)]

m
t:τ x=v−−−−−→

m ⊕ 〈[M := m.M ⊕ (x 7→ v)]〉 ⊕ 〈[B := m.B ⊕ (t 7→ b)]〉

If t is not blocked, it can silently dequeue the oldest

write from its store buffer and place the value in

memory at the given address, without coordinating

with any hardware thread

– p. 21

x86-TSO Abstract Machine: Behaviour

...rules for lock, unlock, and mfence later

– p. 22

Notation Reference

SOME and NONE construct optional values

(·, ·) builds tuples

[] builds lists

++ appends lists

· ⊕ 〈[· := ·]〉 updates records

·(· 7→ ·) updates functions.

– p. 23

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0x=0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

t0:W x=1

x= 0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(x,1)

x= 0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(x,1)

t1:W y=1

x= 0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(y,1)(x,1)

x= 0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

t0:R y=0 (y,1)(x,1)

x= 0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

t1:R x=0(y,1)(x,1)

x= 0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

t0:τ x=1

(y,1)(x,1)

x= 0

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(y,1)

x= 1

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

t1:τ y=1

(y,1)

x= 1

– p. 24

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 1x= 1

– p. 24

Strengthening the model: the MFENCE memory barrier

MFENCE: an x86 assembly instruction

...waits for local write buffer to drain (or forces it – is that an
observable distinction?)

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MFENCE MFENCE

MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

NB: no inter-thread synchronisation

– p. 25

x86-TSO Abstract Machine: Behaviour

B: Barrier

m.B(t) = []

m
t:B
−−→ m

If t ’s store buffer is empty, it can execute an MFENCE

(otherwise the MFENCE blocks until that becomes

true).

– p. 26

Adding MFENCE to our tiny language

Syntax:

statement, s ::= statement
| . . .

| mfence mfence

Threadwise Semantics:

t : 〈mfence, R〉
t:B
−→ t : 〈skip, R〉

T MFENCE

– p. 27

Defining a whole-system x86-TSO Semantics
An x86-TSO system state Stso = 〈P , mtso〉 is a pair of a
process and an x86-TSO abstract machine state mtso.

Stso
l
−→ Stso

′ system Stso does l to become Stso
′

P
l
−→ P

′

mtso

l
−→ mtso

′

〈P , mtso〉
l
−→ 〈P ′, mtso

′〉
STSO ACCESS

P
t:τ
−→ P

′

〈P , mtso〉
t:τ
−→ 〈P ′, mtso〉

STSO INTERNAL PROG

mtso

t:τx=v−−−→ mtso
′

〈P , mtso〉
t:τx=v−−−→ 〈P , mtso

′〉
STSO INTERNAL MEM

– p. 28

Does MFENCE restore SC?

For any process P, define insert fences(P) to be the process
with all s1; s2 replaced by s1; mfence; s2 (formally define this
recursively over statements, threads, and processes).

For any trace l1, . . . , lk of an x86-TSO system state, define
erase flushes(l1, . . . , lk) to be the trace with all t:τ x=v labels
erased (formally define this recursively over the list of labels).

Theorem 1 (?) For all processes P,

traces(〈P , m0〉) = erase flushes(traces(〈insert fences(P), mtso0〉))

– p. 29

Adding Read-Modify-Write instructions
x86 is not RISC – there are many instructions that read and
write memory, e.g.

Thread 0 Thread 1

INC x INC x

– p. 30

Adding Read-Modify-Write instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

– p. 30

Adding Read-Modify-Write instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

– p. 30

Adding Read-Modify-Write instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

Also LOCK’d ADD, SUB, XCHG, etc., and CMPXCHG

Being able to do that atomically is important for many low-level algorithms. On x86 can also do
for other sizes, including for 8B and 16B adjacent-doublesize quantities

– p. 30

CAS

Compare-and-swap (CAS):

CMPXCHG dest←src

compares EAX with dest, then:

if equal, set ZF=1 and load src into dest,

otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.

Can use to solve consensus problem...

– p. 31

Adding LOCK’d instructions to the model

1. extend the tiny language syntax

2. extend the tiny language semantics so that whatever
represents a LOCK;INC x will (in thread t) do
(a) t:L

(b) t:R x=v for an arbitrary v

(c) t:W x=(v + 1)

(d) t:U

3. extend the x86-TSO abstract machine with rules for the
LOCK and UNLOCK transitions

(this lets us reuse the semantics for INC for LOCK;INC, and to
do so uniformly for all RMWs)

– p. 32

x86-TSO Abstract Machine: Behaviour

L: Lock
m.L = NONE

m.B(t) = []

m
t:L
−−→ m ⊕ 〈[L := SOME(t)]〉

If the lock is not held and its buffer is empty, thread t

can begin a LOCK’d instruction.

Note that if a hardware thread t comes to a LOCK’d instruction

when its store buffer is not empty, the machine can take one or

more t:τ x=v steps to empty the buffer and then proceed.
– p. 33

x86-TSO Abstract Machine: Behaviour

U: Unlock
m.L = SOME(t)

m.B(t) = []

m
t:U
−−→ m ⊕ 〈[L := NONE]〉

If t holds the lock, and its store buffer is empty, it can end a
LOCK’d instruction.

– p. 34

Restoring SC with RMWs

– p. 35

CAS cost
From Paul McKenney
(http://www2.rdrop.com/~paulmck/RCU/):

– p. 36

http://www2.rdrop.com/~paulmck/RCU/

NB: Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel:
hyperthreading): multiple hardware threads/core sharing
resources.

If the OS flushes store buffers on context switch, software
threads should have the same semantics.

– p. 37

NB: Not All of x86

Coherent write-back memory (almost all code), but assume

no exceptions

no misaligned or mixed-size accesses

no ‘non-temporal’ operations

no device memory

no self-modifying code

no page-table changes

Also no fairness properties: finite executions only, in this
course.

– p. 38

x86-TSO vs SPARC TSO
x86-TSO based on SPARC TSO

SPARC defined

TSO (Total Store Order)

PSO (Partial Store Order)

RMO (Relaxed Memory Order)

But as far as we know, only TSO has really been used
(implementations have not been as weak as PSO/RMO or
software has turned them off).

The SPARC Architecture Manual, Version 8, 1992.
http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz App. K defines TSO and PSO.

Version 9, Revision SAV09R1459912. 1994
http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz Ch. 8 and App. D define
TSO, PSO, RMO

(in an axiomatic style – see later)
– p. 39

http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz
http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz

NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible
behavior, not a description of the implementation internals

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread ⊇beh

6=hw

Force: Of the internal optimizations of processors, only
per-thread FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving

– p. 40

x86 spinlock example

– p. 41

Adding primitive mutexes to our source language
Statements s ::= . . . | lock x | unlock x

Say lock free if it holds 0, taken otherwise.

Don’t mix locations used as locks and other locations.

Semantics (outline): lock x has to atomically (a) check the
mutex is currently free, (b) change its state to taken, and (c) let
the thread proceed.
unlock x has to change its state to free.

Record of which thread is holding a locked lock? Re-entrancy?

– p. 42

Using a Mutex

Consider

P = t1 : 〈lockm; r = x; x = r + 1; unlockm, R0〉

| t2 : 〈lockm; r = x; x = r + 7; unlockm, R0〉

in the initial store M0:

〈t1 : 〈skip; r = x; x = r + 1; unlockm, R0〉|t2 : 〈lockm; r = x; x = r + 7; unlockm, R0〉, M
′〉

∗

++XXXXXXXXXXXXXXXXXXXXXXXXXXX

〈P, M0〉

t1:LOCKm

99ttttttttt

t2:LOCKm
%%JJJJJJJJJ

〈t1 : 〈skip, R1〉|t2 : 〈skip, R2〉, M0 ⊕ (x 7→ 8, m 7→ 0)〉

〈t1 : 〈lockm; r = x; x = r + 1; unlockm, R0〉|t2 : 〈skip; r = x; x = r + 7; unlockm, R0〉, M
′′〉

∗

33fffffffffffffffffffffffffff

where M
′ = M0 ⊕ (m 7→ 1)

– p. 43

Deadlock

lockm can block (that’s the point). Hence, you can deadlock.

P = t1 : 〈lockm1; lockm2; x = 1; unlockm1; unlockm2, R0〉

| t2 : 〈lockm2; lockm1; x = 2; unlockm1; unlockm2, R0〉

– p. 44

Implementing mutexes with simple x86 spinlocks
Implementing the language-level mutex with x86-level simple

spinlocks

lock x

critical section

unlock x

– p. 45

Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
skip

}

critical section

unlock(x)

Invariant:
lock taken if x ≤ 0
lock free if x=1

(NB: different internal representation from high-level
semantics)

– p. 45

Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

unlock(x)

– p. 45

Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x←1 OR atomic write(x, 1)

– p. 45

Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x←1

– p. 45

Simple x86 Spinlock
The address of x is stored in register eax.

acquire: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP acquire

enter:

critical section

release: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 atomic (LOCK’d) instructions in a Linux spinlock

implementation.
– p. 46

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 47

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire

– p. 47

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical

– p. 47

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire

– p. 47

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x

– p. 47

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

– p. 47

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x

– p. 47

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x
x = 0 acquire

– p. 47

Spinlock SC Data Race
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

– p. 48

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x

– p. 49

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 acquire

– p. 49

Triangular Races (Owens)

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race
... y←v2

...
...

x←v1 x
...

...

– p. 50

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

...
...

x←v1 x←w
...

...

– p. 50

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

... mfence
x←v1 x
...

...

– p. 50

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

...
...

x←v1 lock x
...

...

– p. 50

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2

...
...

x←v1 x
...

...

... lock y←v2

...
...

x←v1 x
...

...

– p. 50

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Triangular race
... y←v2

...
...

x←v1 x
...

...

... y←v2

...
...

lock x←v1 x
...

...

– p. 50

TRF Principle for x86-TSO

Say a program is triangular race free (TRF) if no SC execution
has a triangular race.

Theorem 2 (TRF) If a program is TRF then any x86-TSO
execution is equivalent to some SC execution.

If a program has no triangular races when run on a
sequentially consistent memory, then

x86-TSO = SC

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

Lock Shared Memory

Thread Thread

– p. 51

Spinlock Data Race

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x←1

x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

acquire’s writes are locked

– p. 52

Program Correctness

Theorem 3 Any well-synchronized program that uses the
spinlock correctly is TRF.

Theorem 4 Spinlock-enforced critical sections provide mutual
exclusion.

– p. 53

Other Applications of TRF

A concurrency bug in the HotSpot JVM

Found by Dave Dice (Sun) in Nov. 2009

java.util.concurrent.LockSupport (‘Parker’)

Platform specific C++

Rare hung thread

Since “day-one” (missing MFENCE)

Simple explanation in terms of TRF

Also: Ticketed spinlock, Linux SeqLocks, Double-checked
locking

– p. 54

Architectures

– p. 55

What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

– p. 56

What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

Flawed. Always confusing, sometimes wrong. – p. 56

What About the Specs?

“all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or reason
with — not even the people who wrote it”

Anonymous Processor Architect, 2011

– p. 57

Why all these problems?
Recall that the vendor architectures are:

loose specifications;

claimed to cover a wide range of past and future
processor implementations.

Architectures should:

reveal enough for effective programming;

without revealing sensitive IP; and

without unduly constraining future processor design.

There’s a big tension between these, compounded by internal
politics and inertia.

– p. 58

Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

In a multiprocessor system, maintenance of cache
consistency may, in rare circumstances, require
intervention by system software.

(Intel SDM, Nov. 2006, vol 3a, 10-5)

– p. 59

Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

Fundamental problem: prose specifications cannot be used

to test programs against, or

to test processor implementations, or

to prove properties of either, or even

to communicate precisely.

(in a real sense, the architectures don’t exist).

The models we’re developing here can be used for all these
things. An ‘architecture’ should be such a precisely defined
mathematical artifact.

– p. 59

Validating the models?
We are inventing new abstractions, not just formalising
existing clear-but-non-mathematical specs. So why should
anyone believe them?

some aspects of existing arch specs are clear (a few
concurrency examples, much of ISA spec)

experimental testing

models should be sound w.r.t. experimentally
observable behaviour of existing h/w (modulo h/w
bugs)
but the architectural intent may be (often is) looser

discussion with architects

consistency with expert-programmer intuition

formalisation (at least mathematically consistent)

proofs of metatheory – p. 60

	A Cautionary Tale
	
ormalsize IWP and AMD64, Aug.~2007/Oct.~2008 (Era of Causality)
	Problem 1: Weakness
	Problem 1: Weakness
	Problem 1: Weakness

	Problem 2: Ambiguity
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!

	
ormalsize Intel SDM and AMD64, Nov.~2008 -- Oct.~2015
	Inventing a Usable Abstraction
	x86-TSO Abstract Machine
	x86-TSO Abstract Machine
	x86-TSO Abstract Machine: Interface
	x86-TSO Abstract Machine: Machine States
	x86-TSO Abstract Machine: Auxiliary Definitions
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	Notation Reference
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited

	small Strengthening the model: the MFENCE memory barrier
	x86-TSO Abstract Machine: Behaviour
	Adding MFENCE to our tiny language
	Defining a whole-system x86-TSO Semantics
	Does MFENCE restore SC?
	Adding Read-Modify-Write instructions
	Adding Read-Modify-Write instructions
	Adding Read-Modify-Write instructions
	Adding Read-Modify-Write instructions

	CAS
	Adding LOCK'd instructions to the model
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	Restoring SC with RMWs
	CAS cost
	
ormalsize NB: Processors, Hardware Threads, and Threads
	NB: Not emph {All} of x86
	x86-TSO vs SPARC TSO
	NB: This is an emph {Abstract} Machine
	Adding primitive mutexes to our source language
	Using a Mutex
	Deadlock
	Implementing mutexes with simple x86 spinlocks
	Implementing mutexes with simple x86 spinlocks
	Implementing mutexes with simple x86 spinlocks
	Implementing mutexes with simple x86 spinlocks
	Implementing mutexes with simple x86 spinlocks

	Simple x86 Spinlock
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)

	Spinlock SC Data Race
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)

	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}

	TRF Principle for x86-TSO
	Spinlock Data Race
	Program Correctness
	Other Applications of TRF
	What About the Specs?
	What About the Specs?

	What About the Specs?
	Why all these problems?
	Fundamental Problem
	Fundamental Problem

	Validating the models?

