
Programming in C
Lecture 9: Tooling

Dr Neel Krishnaswami

Michaelmas Term 2017-2018

1 / 24



Undefined and Unspecified Behaviour

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

I What can we do about it?

2 / 24

https://blog.regehr.org/archives/1520


Undefined and Unspecified Behaviour

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

I What can we do about it?

2 / 24

https://blog.regehr.org/archives/1520


Undefined and Unspecified Behaviour

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

I What can we do about it?

2 / 24

https://blog.regehr.org/archives/1520


Undefined and Unspecified Behaviour

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

I What can we do about it?

2 / 24

https://blog.regehr.org/archives/1520


Undefined and Unspecified Behaviour

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

I What can we do about it?

2 / 24

https://blog.regehr.org/archives/1520


Undefined and Unspecified Behaviour

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I Enormous number of possible sources of undefined behavior
(See https://blog.regehr.org/archives/1520)

I What can we do about it?

2 / 24

https://blog.regehr.org/archives/1520


Tooling and Instrumentation

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I There is a great deal of undefined behaviour

I Add instrumentation to detect unsafe behaviour!

I We will look at 3 tools: ASan, UBSan, and Valgrind

3 / 24



Tooling and Instrumentation

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I There is a great deal of undefined behaviour

I Add instrumentation to detect unsafe behaviour!

I We will look at 3 tools: ASan, UBSan, and Valgrind

3 / 24



Tooling and Instrumentation

I We have seen that C is an unsafe language

I Programming errors can arbitrarily corrupt runtime data
structures. . .

I . . . leading to undefined behaviour

I There is a great deal of undefined behaviour

I Add instrumentation to detect unsafe behaviour!

I We will look at 3 tools: ASan, UBSan, and Valgrind

3 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:

I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses

I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()

I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope

I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees

I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan: Address Sanitizer

I One of the leading causes of errors in C is memory corruption:
I Out-of-bounds array accesses
I Use pointer after call to free()
I Use stack variable after it is out of scope
I Double-frees or other invalid frees
I Memory leaks

I AddressSanitizer instruments code to detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

4 / 24



ASan Example #1

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #define N 10

5

6 int main(void) {

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++)

9 printf ("%c", s[i]);

10 printf("\n");

11 return 0;

12 }

I Loop bound goes past the
end of the array

I Undefined behaviour!

I Compile with
-fsanitize=address

5 / 24



ASan Example #1

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #define N 10

5

6 int main(void) {

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++)

9 printf ("%c", s[i]);

10 printf("\n");

11 return 0;

12 }

I Loop bound goes past the
end of the array

I Undefined behaviour!

I Compile with
-fsanitize=address

5 / 24



ASan Example #1

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #define N 10

5

6 int main(void) {

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++)

9 printf ("%c", s[i]);

10 printf("\n");

11 return 0;

12 }

I Loop bound goes past the
end of the array

I Undefined behaviour!

I Compile with
-fsanitize=address

5 / 24



ASan Example #1

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #define N 10

5

6 int main(void) {

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++)

9 printf ("%c", s[i]);

10 printf("\n");

11 return 0;

12 }

I Loop bound goes past the
end of the array

I Undefined behaviour!

I Compile with
-fsanitize=address

5 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

6 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

6 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

6 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

6 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

7 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

7 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

7 / 24



ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced!

7 / 24



ASan Example #3

1 #include <stdlib.h>

2

3 int main(void) {

4 char *s =

5 malloc(sizeof(char) * 10);

6 free(s);

7 free(s);

8 printf("%s", s);

9 return 0;

10 }

1. array is allocated

2. array is freed

3. array is double-freed

8 / 24



ASan Example #3

1 #include <stdlib.h>

2

3 int main(void) {

4 char *s =

5 malloc(sizeof(char) * 10);

6 free(s);

7 free(s);

8 printf("%s", s);

9 return 0;

10 }

1. array is allocated

2. array is freed

3. array is double-freed

8 / 24



ASan Example #3

1 #include <stdlib.h>

2

3 int main(void) {

4 char *s =

5 malloc(sizeof(char) * 10);

6 free(s);

7 free(s);

8 printf("%s", s);

9 return 0;

10 }

1. array is allocated

2. array is freed

3. array is double-freed

8 / 24



ASan Example #3

1 #include <stdlib.h>

2

3 int main(void) {

4 char *s =

5 malloc(sizeof(char) * 10);

6 free(s);

7 free(s);

8 printf("%s", s);

9 return 0;

10 }

1. array is allocated

2. array is freed

3. array is double-freed

8 / 24



ASan Limitations

I Must recompile code

I Adds considerable runtime overhead
I Does not catch all memory errors

I NEVER catches unitialized memory accesses
I NEVER catches unitialized memory accesses

I Still: a must-use tool during development

9 / 24



ASan Limitations

I Must recompile code

I Adds considerable runtime overhead
I Does not catch all memory errors

I NEVER catches unitialized memory accesses
I NEVER catches unitialized memory accesses

I Still: a must-use tool during development

9 / 24



ASan Limitations

I Must recompile code

I Adds considerable runtime overhead

I Does not catch all memory errors
I NEVER catches unitialized memory accesses
I NEVER catches unitialized memory accesses

I Still: a must-use tool during development

9 / 24



ASan Limitations

I Must recompile code

I Adds considerable runtime overhead
I Does not catch all memory errors

I NEVER catches unitialized memory accesses
I NEVER catches unitialized memory accesses

I Still: a must-use tool during development

9 / 24



ASan Limitations

I Must recompile code

I Adds considerable runtime overhead
I Does not catch all memory errors

I NEVER catches unitialized memory accesses

I NEVER catches unitialized memory accesses

I Still: a must-use tool during development

9 / 24



ASan Limitations

I Must recompile code

I Adds considerable runtime overhead
I Does not catch all memory errors

I NEVER catches unitialized memory accesses
I NEVER catches unitialized memory accesses

I Still: a must-use tool during development

9 / 24



ASan Limitations

I Must recompile code

I Adds considerable runtime overhead
I Does not catch all memory errors

I NEVER catches unitialized memory accesses
I NEVER catches unitialized memory accesses

I Still: a must-use tool during development

9 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:

I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow

I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers

I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow

I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan: Undefined Behaviour Sanitizer

I There is lots of non-memory-related undefined behaviour in C:
I Signed integer overflow
I Dereferencing null pointers
I Pointer arithmetic overflow
I Dynamic arrays whose size is non-positive

I Undefined Behaviour Sanitizer (UBSan) instruments code to
detect these errors

I Need to recompile

I Adds runtime overhead

I Use it while developing

I Built into gcc and clang!

10 / 24



UBSan Example #1

1 #include <limits.h>

2

3 int main(void) {

4 int n = INT_MAX;

5 int m = n + 1;

6 return 0;

7 }

1. Signed integer overflow is
undefined

2. So value of m is undefined

3. Compile with
-fsanitize=address

11 / 24



UBSan Example #1

1 #include <limits.h>

2

3 int main(void) {

4 int n = INT_MAX;

5 int m = n + 1;

6 return 0;

7 }

1. Signed integer overflow is
undefined

2. So value of m is undefined

3. Compile with
-fsanitize=address

11 / 24



UBSan Example #1

1 #include <limits.h>

2

3 int main(void) {

4 int n = INT_MAX;

5 int m = n + 1;

6 return 0;

7 }

1. Signed integer overflow is
undefined

2. So value of m is undefined

3. Compile with
-fsanitize=address

11 / 24



UBSan Example #1

1 #include <limits.h>

2

3 int main(void) {

4 int n = INT_MAX;

5 int m = n + 1;

6 return 0;

7 }

1. Signed integer overflow is
undefined

2. So value of m is undefined

3. Compile with
-fsanitize=address

11 / 24



UBSan Example #2

1 #include <limits.h>

2

3 int main(void) {

4 int n = 65

5 int m = n / (n - n);

6 return 0;

7 }

1. Division-by-zero is undefined

2. So value of m is undefined

3. Any possible behaviour is
legal!

12 / 24



UBSan Example #2

1 #include <limits.h>

2

3 int main(void) {

4 int n = 65

5 int m = n / (n - n);

6 return 0;

7 }

1. Division-by-zero is undefined

2. So value of m is undefined

3. Any possible behaviour is
legal!

12 / 24



UBSan Example #2

1 #include <limits.h>

2

3 int main(void) {

4 int n = 65

5 int m = n / (n - n);

6 return 0;

7 }

1. Division-by-zero is undefined

2. So value of m is undefined

3. Any possible behaviour is
legal!

12 / 24



UBSan Example #2

1 #include <limits.h>

2

3 int main(void) {

4 int n = 65

5 int m = n / (n - n);

6 return 0;

7 }

1. Division-by-zero is undefined

2. So value of m is undefined

3. Any possible behaviour is
legal!

12 / 24



UBSan Example #3

1 #include <stdlib.h>

2

3 struct foo {

4 int a, b;

5 };

6

7 int main(void) {

8 struct foo *x = NULL;

9 int m = x->a;

10 return 0;

11 }

1. Accessing a null pointer is
undefined

2. So accessing fields of x is
undefined

3. Any possible behaviour is
legal!

13 / 24



UBSan Example #3

1 #include <stdlib.h>

2

3 struct foo {

4 int a, b;

5 };

6

7 int main(void) {

8 struct foo *x = NULL;

9 int m = x->a;

10 return 0;

11 }

1. Accessing a null pointer is
undefined

2. So accessing fields of x is
undefined

3. Any possible behaviour is
legal!

13 / 24



UBSan Example #3

1 #include <stdlib.h>

2

3 struct foo {

4 int a, b;

5 };

6

7 int main(void) {

8 struct foo *x = NULL;

9 int m = x->a;

10 return 0;

11 }

1. Accessing a null pointer is
undefined

2. So accessing fields of x is
undefined

3. Any possible behaviour is
legal!

13 / 24



UBSan Example #3

1 #include <stdlib.h>

2

3 struct foo {

4 int a, b;

5 };

6

7 int main(void) {

8 struct foo *x = NULL;

9 int m = x->a;

10 return 0;

11 }

1. Accessing a null pointer is
undefined

2. So accessing fields of x is
undefined

3. Any possible behaviour is
legal!

13 / 24



UBSan Limitations

I Must recompile code

I Adds modest runtime overhead

I Does not catch all undefined behaviour

I Still: a must-use tool during development

I Seriously consider using it in production

14 / 24



UBSan Limitations

I Must recompile code

I Adds modest runtime overhead

I Does not catch all undefined behaviour

I Still: a must-use tool during development

I Seriously consider using it in production

14 / 24



UBSan Limitations

I Must recompile code

I Adds modest runtime overhead

I Does not catch all undefined behaviour

I Still: a must-use tool during development

I Seriously consider using it in production

14 / 24



UBSan Limitations

I Must recompile code

I Adds modest runtime overhead

I Does not catch all undefined behaviour

I Still: a must-use tool during development

I Seriously consider using it in production

14 / 24



UBSan Limitations

I Must recompile code

I Adds modest runtime overhead

I Does not catch all undefined behaviour

I Still: a must-use tool during development

I Seriously consider using it in production

14 / 24



UBSan Limitations

I Must recompile code

I Adds modest runtime overhead

I Does not catch all undefined behaviour

I Still: a must-use tool during development

I Seriously consider using it in production

14 / 24



Valgrind

I UBSan and ASan require recompiling

I UBSan and ASan don’t catch accesses to unitialized memory

I Enter Valgrind!

I Instruments binaries to detect numerous errors

15 / 24



Valgrind

I UBSan and ASan require recompiling

I UBSan and ASan don’t catch accesses to unitialized memory

I Enter Valgrind!

I Instruments binaries to detect numerous errors

15 / 24



Valgrind

I UBSan and ASan require recompiling

I UBSan and ASan don’t catch accesses to unitialized memory

I Enter Valgrind!

I Instruments binaries to detect numerous errors

15 / 24



Valgrind

I UBSan and ASan require recompiling

I UBSan and ASan don’t catch accesses to unitialized memory

I Enter Valgrind!

I Instruments binaries to detect numerous errors

15 / 24



Valgrind

I UBSan and ASan require recompiling

I UBSan and ASan don’t catch accesses to unitialized memory

I Enter Valgrind!

I Instruments binaries to detect numerous errors

15 / 24



Valgrind Example

1 #include <stdio.h>

2

3 int main(void) {

4 char s[10];

5 for (int i = 0; i < 10; i++)

6 printf("%c", s[i]);

7 printf("\n");

8 return 0;

9 }

1. Accessing elements of s is
undefined

2. Program prints unitialized
memory

3. Any possible behaviour is
legal!

4. Invoke valgrind with
binary name

16 / 24



Valgrind Example

1 #include <stdio.h>

2

3 int main(void) {

4 char s[10];

5 for (int i = 0; i < 10; i++)

6 printf("%c", s[i]);

7 printf("\n");

8 return 0;

9 }

1. Accessing elements of s is
undefined

2. Program prints unitialized
memory

3. Any possible behaviour is
legal!

4. Invoke valgrind with
binary name

16 / 24



Valgrind Example

1 #include <stdio.h>

2

3 int main(void) {

4 char s[10];

5 for (int i = 0; i < 10; i++)

6 printf("%c", s[i]);

7 printf("\n");

8 return 0;

9 }

1. Accessing elements of s is
undefined

2. Program prints unitialized
memory

3. Any possible behaviour is
legal!

4. Invoke valgrind with
binary name

16 / 24



Valgrind Example

1 #include <stdio.h>

2

3 int main(void) {

4 char s[10];

5 for (int i = 0; i < 10; i++)

6 printf("%c", s[i]);

7 printf("\n");

8 return 0;

9 }

1. Accessing elements of s is
undefined

2. Program prints unitialized
memory

3. Any possible behaviour is
legal!

4. Invoke valgrind with
binary name

16 / 24



Valgrind Example

1 #include <stdio.h>

2

3 int main(void) {

4 char s[10];

5 for (int i = 0; i < 10; i++)

6 printf("%c", s[i]);

7 printf("\n");

8 return 0;

9 }

1. Accessing elements of s is
undefined

2. Program prints unitialized
memory

3. Any possible behaviour is
legal!

4. Invoke valgrind with
binary name

16 / 24



Valgrind Limitations

I Adds very substantial runtime overhead

I Not built into GCC/clang (plus or minus?)

I As usual, does not catch all undefined behaviour

I Still: a must-use tool during testing

17 / 24



Valgrind Limitations

I Adds very substantial runtime overhead

I Not built into GCC/clang (plus or minus?)

I As usual, does not catch all undefined behaviour

I Still: a must-use tool during testing

17 / 24



Valgrind Limitations

I Adds very substantial runtime overhead

I Not built into GCC/clang (plus or minus?)

I As usual, does not catch all undefined behaviour

I Still: a must-use tool during testing

17 / 24



Valgrind Limitations

I Adds very substantial runtime overhead

I Not built into GCC/clang (plus or minus?)

I As usual, does not catch all undefined behaviour

I Still: a must-use tool during testing

17 / 24



Valgrind Limitations

I Adds very substantial runtime overhead

I Not built into GCC/clang (plus or minus?)

I As usual, does not catch all undefined behaviour

I Still: a must-use tool during testing

17 / 24



Assessed Exercise

See “Head of Department’s Announcement”

I To be completed by noon on Monday 22 January 2018

I Viva examinations 1330-1630 on Thursday 25 January 2018

I Viva examinations 1330-1630 on Friday 26 January 2018

I Download the starter pack from:
http://www.cl.cam.ac.uk/Teaching/1718/ProgC++/

I This should contain eight files:

server.c client.c rfc0791.txt rfc0793.txt

message1 message2 message3 message4

18 / 24

http://www.cl.cam.ac.uk/Teaching/1718/ProgC++/


Exercise aims

Demonstrate an ability to:

I Understand (simple) networking code

I Use control flow, functions, structures and pointers

I Use libraries, including reading and writing files

I Understand a specification

I Compile and test code

I Comprehending man pages

Task is split into three parts:

I Comprehension and debugging

I Preliminary analysis

I Completed code and testing

19 / 24



Exercise submission

I Assessment is in the form of a ‘tick’

I There will be a short viva; remember to sign up!

I Submission is via email to c-tick@cl.cam.ac.uk

I Your submission should include seven files, packed in to a ZIP file
called crsid.zip and attached to your submission email:

answers.txt client1.c summary.c message1.txt

server1.c extract.c message2.jpg

20 / 24

c-tick@cl.cam.ac.uk


Hints: IP header

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

21 / 24



Hints: IP header (in C)

1 #include <stdint.h>

2

3 struct ip {

4 uint8_t hlenver;

5 uint8_t tos;

6 uint16_t len;

7 uint16_t id;

8 uint16_t off;

9 uint8_t ttl;

10 uint8_t p;

11 uint16_t sum;

12 uint32_t src;

13 uint32_t dst;

14 };

15

16 #define IP_HLEN(lenver) (lenver & 0x0f)

17 #define IP_VER(lenver) (lenver >> 4)

22 / 24



Hints: network byte order

I The IP network is big-endian; x86 is little-endian; ARM can be either

I Reading multi-byte values requires possible conversion
I The BSD API specifies:

I uint16_t ntohs(uint16_t netshort)
I uint32_t ntohl(uint32_t netlong)
I uint16_t htons(uint16_t hostshort)
I uint32_t htonl(uint32_t hostlong)

which encapsulate the notions of host and network and their
interconversion (which may be a no-op)

23 / 24


