Programming in C
Lecture 6: The Memory Hierarchy and Cache Optimization

Dr Neel Krishnaswami

Michaelmas Term 2017-2018

/16



Three Simple C Functions

void increment_every(int *}array)
for (int i = 0; i < BIG_NUMBER; i += 1) {
array[i] = 0;
}
void increment_8th(int *array) {
for (int i = 0; i < BIG_NUMBER; i += 8)
array[i] = 0;
}
void increment_16th(int *array) {
for (int i = 0; i < BIG_NUMBER; i += 16)
array[i] = 0;

16



Three Simple C Functions

void increment_every(int *}array)
for (int i = 0; i < BIG_NUMBER; i += 1) {
array[i] = 0;
}
void increment_8th(int *array) {
for (int i = 0; i < BIG_NUMBER; i += 8)
array[i] = 0;
}
void increment_16th(int *array) {
for (int i = 0; i < BIG_NUMBER; i += 16)
array[i] = 0;

» Which runs faster?

16



Three Simple C Functions

void increment_every(int *}array)
for (int i = 0; i < BIG_NUMBER; i += 1) {
array[i] = 0;
}
void increment_8th(int *array) {
for (int i = 0; i < BIG_NUMBER; i += 8)
0;

array[i]
}
void increment_16th(int *array) {
for (int i = 0; i < BIG_NUMBER; i += 16)
array[i] 0;

» Which runs faster?

» ...and by how much?

16



The Memory Hierarchy

Main Memory (RAM)

’ Unified Level 3 Cache‘

| Unified Level 2 Cache]

T

Level 1 Instruction Cache‘ ’Level 1 Data Cache

\/

’CPU and Registers‘

3/16



Latencies in the Memory Hierarchy

Access Type Cycles Time Human Scale
L1 cache reference ~4 1.3 ns 1s
L2 cache reference ~10 4 ns 3s
L3 cache reference, unshared =40 13 ns 10s
L3 cache reference, shared ~65 20 ns 16s
Main memory reference ~300 100 ns 80s

4/16



Latencies in the Memory Hierarchy

Access Type Cycles Time Human Scale
L1 cache reference ~4 1.3 ns 1s
L2 cache reference ~10 4 ns 3s
L3 cache reference, unshared =40 13 ns 10s
L3 cache reference, shared ~65 20 ns 16s
Main memory reference ~300 100 ns 80s

» Accesses to main memory are slow

4/16



Latencies in the Memory Hierarchy

Access Type Cycles Time Human Scale
L1 cache reference ~4 1.3 ns 1s
L2 cache reference ~10 4 ns 3s
L3 cache reference, unshared =40 13 ns 10s
L3 cache reference, shared ~65 20 ns 16s
Main memory reference ~300 100 ns 80s

» Accesses to main memory are slow

» This can dominate performance!

4/16



How Caches Work

When a CPU looks up an address. . .:

16



How Caches Work

When a CPU looks up an address. . .:

1. It looks up the address in the cache

5/16



How Caches Work

When a CPU looks up an address. . .:
1. It looks up the address in the cache

2. If present, this is a cache hit (cheap!)

5/16



How Caches Work

When a CPU looks up an address. . .:
1. It looks up the address in the cache

2. If present, this is a cache hit (cheap!)
3. If absent, this is a cache miss

5/16



How Caches Work

When a CPU looks up an address. . .:
1. It looks up the address in the cache

2. If present, this is a cache hit (cheap!)
3. If absent, this is a cache miss
3.1 The address is then looked up in main memory (expensive!)

5/16



How Caches Work

When a CPU looks up an address. . .:
1. It looks up the address in the cache
2. If present, this is a cache hit (cheap!)

3. If absent, this is a cache miss

3.1 The address is then looked up in main memory (expensive!)
3.2 The address/value pair is then stored in the cache

5/16



How Caches Work

When a CPU looks up an address. . .:
1. It looks up the address in the cache
2. If present, this is a cache hit (cheap!)

3. If absent, this is a cache miss

3.1 The address is then looked up in main memory (expensive!)
3.2 The address/value pair is then stored in the cache
3.3 ...along with the next 64 bytes (typically) of memory

5/16



How Caches Work

When a CPU looks up an address. . .:
1. It looks up the address in the cache

2. If present, this is a cache hit (cheap!)
3. If absent, this is a cache miss
3.1 The address is then looked up in main memory (expensive!)
3.2 The address/value pair is then stored in the cache
3.3 ...along with the next 64 bytes (typically) of memory
3.4 This is a cache line or cache block

5/16



Locality: Taking advantage of caching

Caching is most favorable:

/16



Locality: Taking advantage of caching

Caching is most favorable:

» Each piece of data the program works on is near (in RAM)
the address of the last piece of data the program worked on.

6/16



Locality: Taking advantage of caching

Caching is most favorable:

» Each piece of data the program works on is near (in RAM)

the address of the last piece of data the program worked on.

» This is the principle of locality

6

16



Locality: Taking advantage of caching

Caching is most favorable:
» Each piece of data the program works on is near (in RAM)
the address of the last piece of data the program worked on.
» This is the principle of locality
» Performance engineering involves redesigning data structures
to take advantage of locality.

6

16



Pointers Are Expensive

Consider the following Java linked list implementation

class List<T> {
public T head;
public List<T> tail;

public List(T head, List<T> tail) {
this.head head;
this.tail = tail;

/16



Pointers Are Expensive

It corresponds to the following C code:

typedef struct List* list_t;

struct List {
void *head;
list_t tail;
}s;

list_t list_cons(void *head, list_t tail) {

list_t result =
r->head = head;
r->tail = tail;
return r;

malloc(sizeof (struct list));

16



Pointers Are Expensive

It corresponds to the following C code:

typedef struct List* list_t;

struct List {
void *head;
list_t tail;

};

list_t list_cons(void *head, list_t tail) {
list_t result = malloc(sizeof (struct list));
r->head = head;
r->tail = tail;
return r;

» We use void * for genericity, but this introduces pointer
indirections.

16



Pointers Are Expensive

It corresponds to the following C code:

typedef struct List* list_t;

struct List {
void *head;
list_t tail;

};

list_t list_cons(void *head, list_t tail) {
list_t result = malloc(sizeof (struct list));
r->head = head;
r->tail = tail;
return r;

» We use void * for genericity, but this introduces pointer
indirections.

» This can get expensive!

16



Specializing the Representation

Suppose we use a list at a Data * type:

struct data {
int 1i;
double d;
char c;
+;
typedef struct data Data;

struct List {
Data *head;
struct List *tail;

};

16



Technique #1: Intrusive Lists

We can try changing the list representation to:

typedef struct intrusive_list ilist_t;
struct intrusive_list {
Data head;
ilist_t tail;
};
ilist_t ilist_cons(Data head, ilist_t tail) {
list_t result = malloc(sizeof(struct intrusive_list));

r->head = head;
r->tail = tail;
return r;

10/16



Technique #1: Intrusive Lists

We can try changing the list representation to:

typedef struct intrusive_list ilist_t;
struct intrusive_list {
Data head;
ilist_t tail;
};
ilist_t ilist_cons(Data head, ilist_t tail) {
list_t result = malloc(sizeof(struct intrusive_list));

r->head = head;
r->tail = tail;
return r;

» The indirection in the head is removed

10/16



Technique #1: Intrusive Lists

We can try changing the list representation to:

typedef struct intrusive_list ilist_t;
struct intrusive_list {
Data head;
ilist_t tail;
};
ilist_t ilist_cons(Data head, ilist_t tail) {
list_t result = malloc(sizeof(struct intrusive_list));
r->head = head;
r->tail = tail;
return r;

» The indirection in the head is removed

» But we had to use a specialized representation

10/16



Technique #1: Intrusive Lists

We can try changing the list representation to:

typedef struct intrusive_list ilist_t;
struct intrusive_list {
Data head;
ilist_t tail;
};
ilist_t ilist_cons(Data head, ilist_t tail) {
list_t result = malloc(sizeof(struct intrusive_list));
r->head = head;
r->tail = tail;
return r;

» The indirection in the head is removed
» But we had to use a specialized representation

» Can no longer use generic linked list routines

10/16



Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:

11/16



Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:

1. Following a tail pointer can lead to cache miss

11/16



Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:
1. Following a tail pointer can lead to cache miss

2. Cons cells requiring storing a tail pointer. ..

11/16



Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:
1. Following a tail pointer can lead to cache miss
2. Cons cells requiring storing a tail pointer. ..

3. This reduces the number of data elements that fit in a cache
line

11/16



Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:
1. Following a tail pointer can lead to cache miss
2. Cons cells requiring storing a tail pointer. ..
3. This reduces the number of data elements that fit in a cache
line

4. This decreases data density, and increases cache miss rate

11/16



Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:
1. Following a tail pointer can lead to cache miss
2. Cons cells requiring storing a tail pointer. ..
3. This reduces the number of data elements that fit in a cache
line
4. This decreases data density, and increases cache miss rate
5. Replace ilist_t with Datal[]!

11/16



Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:

Data *iota_array(int n) {
Data *a = malloc(n * sizeof(Data));
for (int 1 = 0; i < n; i++) {
alil.i = i
alil.d
alil.c

wnmn

- -
k] = e
«“ O

}
return a;

3

12 /16



Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:

Data *iota_array(int n) {
Data *a = malloc(n * sizeof(Data));
for (int 1 = 0; i < n; i++) {
alil.i = i
alil.d
alil.c

i n n

- -
k] = e
«“ O

}
return a;

3

» No longer store tail pointers

12 /16



Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:
Data *iota_array(int n) {
Data *a = malloc(n * sizeof(Data));
for (int 1 = 0; i < n; i++) {
alil.i = 1i;
alil.d = 1.0;
alil.c = 'x';
}

return a;

» No longer store tail pointers

» Every element comes after previous element in memory

12 /16



Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:
Data *iota_array(int n) {
Data *a = malloc(n * sizeof(Data));
for (int 1 = 0; i < n; i++) {
alil.i = 1i;
alil.d = 1.0;
alil.c = 'x';
}

return a;

» No longer store tail pointers
» Every element comes after previous element in memory

» Can no longer incrementally build lists

12 /16



Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:

Data *iota_array(int n) {
Data *a = malloc(n * sizeof(Data));
for (int 1 = 0; i < n; i++) {
alil.i = 1i;
alil.d = 1.0;
alil.c = 'x';
}

return a;

v

No longer store tail pointers

v

Every element comes after previous element in memory

v

Can no longer incrementally build lists

v

Have to know size up-front

12 /16



Technique #3: Arrays of Structs to Struct of Arrays

Suppose we have an operation
struct data {
int i;
double d;
char c;
};
typedef struct data Data;

void traverse_array(int n, Data *a) {
for (int i = 0; i < n; i++)
alil.c += 'y';

13/16



Technique #3: Arrays of Structs to Struct of Arrays
Suppose we have an operation
struct data {
int i;
double d;
char c;
};
typedef struct data Data;

void traverse_array(int n, Data *a) {
for (int i = 0; i < n; i++)

alil.c += 'y';

> Note that we are only modifying character field c.

13/16



Technique #3: Arrays of Structs to Struct of Arrays
Suppose we have an operation
struct data {
int i;
double d;
char c;
};
typedef struct data Data;

void traverse_array(int n, Data *a) {
for (int i = 0; i < n; i++)
alil.c += 'y';

> Note that we are only modifying character field c.
» We have "hop over” the integer and double fields.

13/16



Technique #3: Arrays of Structs to Struct of Arrays
Suppose we have an operation
struct data {
int i;
double d;
char c;
};
typedef struct data Data;

void traverse_array(int n, Data *a) {
for (int i = 0; i < n; i++)
alil.c += 'y';

> Note that we are only modifying character field c.
» We have "hop over” the integer and double fields.

» So characters are at least 12, and probably 16 bytes apart.

13 /16



Technique #3: Arrays of Structs to Struct of Arrays
Suppose we have an operation
struct data {
int i;
double d;
char c;
};
typedef struct data Data;

void traverse_array(int n, Data *a) {
for (int i = 0; i < n; i++)
alil.c += 'y';

Note that we are only modifying character field c.
We have “hop over” the integer and double fields.
So characters are at least 12, and probably 16 bytes apart.
This means only 4 characters in each cache line. ..

vV vyVvyy

13/16



Technique #3: Arrays of Structs to Struct of Arrays
Suppose we have an operation
struct data {
int i;
double d;
char c;
};
typedef struct data Data;

void traverse_array(int n, Data *a) {
for (int i = 0; i < n; i++)
alil.c += 'y';

Note that we are only modifying character field c.

We have “hop over” the integer and double fields.

So characters are at least 12, and probably 16 bytes apart.
This means only 4 characters in each cache line. ..
Optimally, 64 characters fit in each cache line. ..

vV VvV VvYyVvYyy

13 /16



Technique #3: Arrays of Structs to Struct of Arrays

typedef struct datavec *DataVec;
struct datavec {

int *is;

double *ds;

char *cs;

};

14/16



Technique #3: Arrays of Structs to Struct of Arrays

typedef struct datavec *DataVec;, |pstead of storing an array of
struct datavec { structures. . .

int *is;

double *ds;

char *cs;

};

14/16



Technique #3: Arrays of Structs to Struct of Arrays

typedef struct datavec *DataVec;, |pstead of storing an array of

struct datavec { structures. . .
int *is;
» We store a struct of arrays
double *ds;
char *cs;

};

14 /16



Technique #3: Arrays of Structs to Struct of Arrays

typedef struct datavec *DataVec;, |pstead of storing an array of

struct datavec { structures. . .
int *is;
» We store a struct of arrays
double *ds; o ]
char *cs; » Now traversing just the cs is

}: easy

14 /16



Technique #3: Traversing Struct of Arrays

void traverse_datavec(int n, DataVec d) {
char *a = d->cs;
for (int 1 = 0; i < n; i++) {
ali] += 'y';
}
}

15/16



Technique #3: Traversing Struct of Arrays

void traverse_datavec(int n, DataVec d) {
char *a = d->cs;
for (int 1 = 0; i < n; i++) {
ali] += 'y';
}
}

» To update the characters. ..

15/16



Technique #3: Traversing Struct of Arrays

void traverse_datavec(int n, DataVec d) {
char *a = d->cs;
for (int 1 = 0; i < n; i++) {
ali] += 'y';
}
}

» To update the characters. ..

» Just iterate over the character. ..

15/16



Technique #3: Traversing Struct of Arrays

void traverse_datavec(int n, DataVec d) {
char *a = d->cs;
for (int 1 = 0; i < n; i++) {
ali] += 'y';
}
}

» To update the characters. ..
» Just iterate over the character. ..

» Higher cache efficiency!

15/16



Conclusion

16/16



Conclusion

» Memory is hierarchical, with each level slower than
predecessors

16 /16



Conclusion

» Memory is hierarchical, with each level slower than
predecessors

» Caching make locality assumption

16 /16



Conclusion

» Memory is hierarchical, with each level slower than
predecessors

» Caching make locality assumption

» Making this assumption true requires careful design

16 /16



Conclusion

v

Memory is hierarchical, with each level slower than
predecessors

v

Caching make locality assumption

v

Making this assumption true requires careful design

Substantial code alterations can be needed

v

16 /16



Conclusion

v

Memory is hierarchical, with each level slower than
predecessors

v

Caching make locality assumption

v

Making this assumption true requires careful design

Substantial code alterations can be needed

v

v

But can lead to major performance gains

16 /16



