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Three Simple C Functions

void increment_every(int *}array)

for (int i = 0; i < BIG_NUMBER; i += 1) {

array[i] = 0;

}

void increment_8th(int *array) {

for (int i = 0; i < BIG_NUMBER; i += 8)

array[i] = 0;

}

void increment_16th(int *array) {

for (int i = 0; i < BIG_NUMBER; i += 16)

array[i] = 0;

}

I Which runs faster?

I . . . and by how much?
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The Memory Hierarchy

CPU and Registers

Level 1 Instruction Cache Level 1 Data Cache

Unified Level 2 Cache

Unified Level 3 Cache

Main Memory (RAM)
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Latencies in the Memory Hierarchy

Access Type Cycles Time Human Scale
L1 cache reference ≈4 1.3 ns 1s
L2 cache reference ≈10 4 ns 3s
L3 cache reference, unshared ≈40 13 ns 10s
L3 cache reference, shared ≈65 20 ns 16s
Main memory reference ≈300 100 ns 80s

I Accesses to main memory are slow

I This can dominate performance!
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How Caches Work

When a CPU looks up an address. . . :

1. It looks up the address in the cache

2. If present, this is a cache hit (cheap!)

3. If absent, this is a cache miss

3.1 The address is then looked up in main memory (expensive!)
3.2 The address/value pair is then stored in the cache
3.3 . . . along with the next 64 bytes (typically) of memory
3.4 This is a cache line or cache block
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Locality: Taking advantage of caching

Caching is most favorable:

I Each piece of data the program works on is near (in RAM)
the address of the last piece of data the program worked on.

I This is the principle of locality

I Performance engineering involves redesigning data structures
to take advantage of locality.
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Pointers Are Expensive

Consider the following Java linked list implementation

class List<T> {

public T head;

public List<T> tail;

public List(T head, List<T> tail) {

this.head = head;

this.tail = tail;

}

}
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Pointers Are Expensive

It corresponds to the following C code:

typedef struct List* list_t;

struct List {

void *head;

list_t tail;

};

list_t list_cons(void *head, list_t tail) {

list_t result = malloc(sizeof(struct list));

r->head = head;

r->tail = tail;

return r;

}

I We use void * for genericity, but this introduces pointer
indirections.

I This can get expensive!
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Specializing the Representation

Suppose we use a list at a Data * type:

struct data {

int i;

double d;

char c;

};

typedef struct data Data;

struct List {

Data *head;

struct List *tail;

};
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Technique #1: Intrusive Lists

We can try changing the list representation to:

typedef struct intrusive_list ilist_t;

struct intrusive_list {

Data head;

ilist_t tail;

};

ilist_t ilist_cons(Data head, ilist_t tail) {

list_t result = malloc(sizeof(struct intrusive_list));

r->head = head;

r->tail = tail;

return r;

}

I The indirection in the head is removed

I But we had to use a specialized representation

I Can no longer use generic linked list routines
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Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:

1. Following a tail pointer can lead to cache miss

2. Cons cells requiring storing a tail pointer. . .

3. This reduces the number of data elements that fit in a cache
line

4. This decreases data density, and increases cache miss rate

5. Replace ilist_t with Data[]!
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Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:

Data *iota_array(int n) {

Data *a = malloc(n * sizeof(Data));

for (int i = 0; i < n; i++) {

a[i].i = i;

a[i].d = 1.0;

a[i].c = 'x';

}

return a;

}

I No longer store tail pointers

I Every element comes after previous element in memory

I Can no longer incrementally build lists

I Have to know size up-front
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Technique #3: Arrays of Structs to Struct of Arrays
Suppose we have an operation

struct data {

int i;

double d;

char c;

};

typedef struct data Data;

void traverse_array(int n, Data *a) {

for (int i = 0; i < n; i++)

a[i].c += 'y';

}

I Note that we are only modifying character field c.
I We have “hop over” the integer and double fields.
I So characters are at least 12, and probably 16 bytes apart.
I This means only 4 characters in each cache line. . .
I Optimally, 64 characters fit in each cache line. . .
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Technique #3: Arrays of Structs to Struct of Arrays

typedef struct datavec *DataVec;

struct datavec {

int *is;

double *ds;

char *cs;

};

I Instead of storing an array of
structures. . .

I We store a struct of arrays

I Now traversing just the cs is
easy
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Technique #3: Traversing Struct of Arrays

void traverse_datavec(int n, DataVec d) {

char *a = d->cs;

for (int i = 0; i < n; i++) {

a[i] += 'y';

}

}

I To update the characters. . .

I Just iterate over the character. . .

I Higher cache efficiency!
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Conclusion

I Memory is hierarchical, with each level slower than
predecessors

I Caching make locality assumption

I Making this assumption true requires careful design

I Substantial code alterations can be needed

I But can lead to major performance gains
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