
Programming in C
3. Pointers and Structures

Dr. Neel Krishnaswami
University of Cambridge

(based on notes from and with thanks to Anil Madhavapeddy, Alan Mycroft,

Alastair Beresford and Andrew Moore)

Michaelmas Term 2017-2018

Pointers

I Computer memory is often abstracted as a sequence of bytes,
grouped into words

I Each byte has a unique address or index into this sequence

I The size of a word (and byte!) determines the size of addressable
memory in the machine

I A pointer in C is a variable which contains the memory address of
another variable (this can, itself, be a pointer)

I Pointers are declared or defined using an asterisk(*); for example:
char *pc; or int **ppi;

I The asterisk binds to the variable name, not the type specifier; for
example char *pc,c;

I A pointer does not necessarily take the same amount of storage space
as the type it points to

2 / 25

Example

...... ...

0
x
2
c

0
x
3
0

0
x
3
4

0
x
3
8

0
x
4
c

0
x
5
0

0
x
6
0

05

42

1c

52 00

00

00

62

c
h
a
r

c

c
h
a
r

*
p
c

i
n
t

i

i
n
t

*
p
i

i
n
t

*
*
p
p
i

00

00

00

38 4c

00

00

00

41

41

Little

Big

3 / 25

Manipulating pointers

I The value “pointed to” by a pointer can be “retrieved” or
dereferenced by using the unary * operator; for example:
int *p = ...

int x = *p;

I The memory address of a variable is returned with the unary
ampersand (&) operator; for example
int *p = &x;

I Dereferenced pointer values can be used in normal expressions; for
example: *pi += 5; or (*pi)++

4 / 25

Example

1 #include <stdio.h>

2

3 int main(void) {

4 int x=1,y=2;

5 int *pi;

6 int **ppi;

7

8 pi = &x; ppi = π

9 printf("%p, %p, %d=%d=%d\n",ppi,pi,x,*pi,**ppi);

10 pi = &y;

11 printf("%p, %p, %d=%d=%d\n",ppi,pi,y,*pi,**ppi);

12

13 return 0;

14 }

5 / 25

Pointers and arrays

I A C array uses consecutive memory addresses without padding to
store data

I An array name (used in an expression without an index) represents
the memory address of the first element of the array; for example:
char c[10];

char *pc = c; is the same as
char *pc = &c[0];

I Pointers can be used to “index” into any element of an array; for
example:
int i[10];

int *pi = &i[5];

6 / 25

Pointer arithmetic

I Pointer arithmetic can be used to adjust where a pointer points; for
example, if pc points to the first element of an array, after executing
pc+=3; then pc points to the fourth element

I A pointer can even be dereferenced using array notation; for example
pc[2] represents the value of the array element which is two elements
beyond the array element currently pointed to by pc

I In summary, for an array c, *(c+i)≡c[i] and c+i≡&c[i]

I A pointer is a variable, but an array name is not; therefore pc=c and
pc++ are valid, but c=pc and c++ are not

7 / 25

Example

1 #include <stdio.h>

2

3 int main(void) {

4 char str[] = "A string.";

5 char *pc = str;

6

7 printf("%c %c %c\n",str[0],*pc,pc[3]);

8 pc += 2;

9 printf("%c %c %c\n",*pc, pc[2], pc[5]);

10

11 return 0;

12 }

8 / 25

Pointers as function arguments

I Recall that all arguments to a function are copied, i.e.
passed-by-value; modification of the local value does not affect the
original

I In the second lecture we defined functions which took an array as an
argument; for example void reverse(char s[])

I Why, then, does reverse affect the values of the array after the
function returns (i.e. the array values haven’t been copied)?

I because s is re-written to char *s and the caller implicitly passes a
pointer to the start of the array

I Pointers of any type can be passed as parameters and return types of
functions

I Pointers allow a function to alter parameters passed to it

9 / 25

Example

I Compare swp1(a,b) with swp2(&a,&b):

1 void swp1(int x,int y)

2 {

3 int temp = x;

4 x = y;

5 y = temp;

6 }

1 void swp2(int *px,int *py)

2 {

3 int temp = *px;

4 *px = *py;

5 *py = temp;

6 }

10 / 25

Arrays of pointers

I C allows the creation of arrays of pointers; for example
int *a[5];

I Arrays of pointers are particularly useful with strings

I An example is C support of command line arguments:
int main(int argc, char *argv[]) { ... }

I In this case argv is an array of character pointers, and argc tells the
programmer the length of the array

11 / 25

Example

NULL

argv:

firstarg\0

progname\0

secondarg\0

argv[0]

argv[3]

argv[2]

argv[1]argc: 3

12 / 25

Multi-dimensional arrays

I Multi-dimensional arrays can be declared in C; for example:
int i[5][10];

I Values of the array can be accessed using square brackets; for
example: i[3][2]

I When passing a two dimensional array to a function, the first
dimension is not needed; for example, the following are equivalent:
void f(int i[5][10]) { ... }

void f(int i[][10]) { ... }

void f(int (*i)[10]) { ... }

I In arrays with higher dimensionality, all but the first dimension must
be specified

13 / 25

Pointers to functions

I C allows the programmer to use pointers to functions

I This allows functions to be passed as arguments to functions

I For example, we may wish to parameterise a sort algorithm on
different comparison operators (e.g. lexicographically or numerically)

I If the sort routine accepts a pointer to a function, the sort routine can
call this function when deciding how to order values

14 / 25

Example

1 void sort(int a[], const int len,

2 int (*compare)(int, int))

3 {

4 int i,j,tmp;

5 for(i=0;i<len-1;i++)

6 for(j=0;j<len-1-i;j++)

7 if ((*compare)(a[j],a[j+1]))

8 tmp=a[j], a[j]=a[j+1], a[j+1]=tmp;

9 }

10

11 int inc(int a, int b) {

12 return a > b ? 1 : 0;

13 }

Source of some confusion: either or both of the *s in *compare may be
omitted due to language (over-)generosity.

15 / 25

Example

1 #include <stdio.h>

2 #include "example8.h"

3

4 int main(void) {

5 int a[] = {1,4,3,2,5};

6 unsigned int len = 5;

7 sort(a,len,inc); //or sort(a,len,&inc);

8

9 int *pa = a; //C99

10 printf("[");

11 while (len--)

12 printf("%d%s",*pa++,len?" ":"");

13 printf("]\n");

14

15 return 0;

16 }

16 / 25

The void * pointer

I C has a “typeless” or “generic” pointer: void *p

I This can be a pointer to any object (but not legally to a function)

I This can be useful when dealing with dynamic memory

I Enables “polymorphic” code; for example:

1 sort(void *p, const unsigned int len,

2 int (*comp)(void *,void *));

I However this is also a big “hole” in the type system

I Therefore void * pointers should only be used where necessary

17 / 25

Structure declaration

I A structure is a collection of one or more members (fields)

I It provides a simple method of abstraction and grouping

I A structure may itself contain structures

I A structure can be assigned to, as well as passed to, and returned
from functions

I We declare a structure using the keyword struct

I For example, to declare a structure circle we write
struct circle {int x; int y; unsigned int r;};

I Declaring a structure creates a new type

18 / 25

Structure definition

I To define an instance of the structure circle we write
struct circle c;

I A structure can also be initialised with values:
struct circle c = {12, 23, 5};

I An automatic, or local, structure variable can be initialised by
function call:
struct circle c = circle_init();

I A structure can declared, and several instances defined in one go:
struct circle {int x; int y; unsigned int r;} a, b;

19 / 25

Member access

I A structure member can be accessed using ‘.’ notation:
structname.member; for example: vect.x

I Comparison (e.g. vect1 > vect2) is undefined

I Pointers to structures may be defined; for example:
struct circle *pc

I When using a pointer to a struct, member access can be achieved
with the ‘.’ operator, but can look clumsy; for example: (*pc).x

I Equivalently, the ‘->’ operator can be used; for example: pc->x

20 / 25

Self-referential structures

I A structure declaration cannot contain itself as a member, but it can
contain a member which is a pointer whose type is the structure
declaration itself

I This means we can build recursive data structures; for example:

1 struct tree {

2 int val;

3 struct tree *left;

4 struct tree *right;

5 }

1 struct link {

2 int val;

3 struct link *next;

4 }

21 / 25

Unions

I A union variable is a single variable which can hold one of a number
of different types

I A union variable is declared using a notation similar to structures;
for example: union u { int i; float f; char c;};

I The size of a union variable is the size of its largest member

I The type held can change during program execution

I The type retrieved must be the type most recently stored

I Member access to unions is the same as for structures (‘.’ and ‘->’)

I Unions can be nested inside structures, and vice versa

22 / 25

Bit fields

I Bit fields allow low-level access to individual bits of a word

I Useful when memory is limited, or to interact with hardware

I A bit field is specified inside a struct by appending a declaration with
a colon (:) and number of bits; for example:
struct fields { int f1 : 2; int f2 : 3;};

I Members are accessed in the same way as for structs and unions

I A bit field member does not have an address (no & operator)
I Lots of details about bit fields are implementation specific:

I word boundary overlap & alignment, assignment direction, etc.

23 / 25

Example (adapted from K&R)

1 struct { /* a compiler symbol table */

2 char *name;

3 struct {

4 unsigned int is_keyword : 1;

5 unsigned int is_extern : 1;

6 unsigned int is_static : 1;

7 ...

8 } flags;

9 int utype;

10 union {

11 int ival; /* accessed as symtab[i].u.ival */

12 float fval;

13 char *sval;

14 } u;

15 } symtab[NSYM];

24 / 25

Exercises

1. If p is a pointer, what does p[-2] mean? When is this legal?

2. Write a string search function with a declaration of
char *strfind(const char *s, const char *f);

which returns a pointer to first occurrence of the string s in the string f

(and NULL otherwise)

3. If p is a pointer to a structure, write some C code which uses all the
following code snippets: “++p->i”, “p++->i”, “*p->i”, “*p->i++”,
“(*p->i)++” and “*p++->i”; describe the action of each code snippet

4. Write a program calc which evaluates a reverse Polish expression given on
the command line; for example
$ calc 2 3 4 + *

should print 14 (K&R Exercise 5-10)

25 / 25

