
Notes for Programming in C Lab Session #6

16 October 2017

1 Introduction

The purpose of this lab session is to write a small program that makes use of arena-style allocation.

2 Overview

In this lab, you will define some functions to do match strings against a subset of regular expressions. In
the re.h header file, we define the following data type

1 enum re_tag { CHR, SEQ, ALT };
2 typedef struct re Regexp;
3 struct re {
4 enum re_tag type;
5 union data {
6 struct { char c; } chr;
7 struct { Regexp *fst; Regexp *snd; } pair;
8 } data;
9 };

This is a data type for representing trees. We define an enumeration enum re_tag, which says that we
have 3 possibilities, either a single-character CHR, an alternative ALT, and a sequential composition SEQ.

Next, we define a structure type Regexp, with two fields. The first is the type field, which is one of the
tags from the enumeration above. The second is a union type data, which is either a character chr, or a
structure containing a pair of pointers to two regular expressions. The type fields determines which case
of the union to use – a valid Regexp structure has a character if the type field is CHR, and a pair if the type
field is SEQ or ALT.

The idea is that a CHR-regexp matches a single character string, the SEQ-regexp matches if the first part
of the string matches the first element of the pair and the second part of the string, and the ALT-regexp
matches if the string matches either the first or the second element of the pair.

Below, I give a table of example regexps, strings and whether or not there is a match. Here, x, a, b, c, u,
and v are characters, juxtaposition represents SEQuential composition, and (+) denotes ALTernative.

Regexp "ab" "xab" "xba" "axu"
x(ab+ba) 7 3 3 7
(a+b+c)(x+y)(u+v+w) 7 7 7 3

3 Instructions

1. Download the lab6.tar.gz file from the class website.

1



2. Extract the file using the command tar xvzf lab6.tar.gz.

3. This will extract the lab6/ directory. Change into this directory using the cd lab6/ command.

4. In this directory, there will be files lab6.c, re.h, and re.c.

5. There will also be a file Makefile, which is a build script which can be invoked by running the
command make (without any arguments). It will automatically invoke the compiler and build the
lab6 executable.

6. Run the lab6 executable, and see if your program works. The expected correct output is in a comment
in the lab6.c file.

4 The Types and Functions to Implement

• struct arena

The re.h file contains a declaration of the arena structure, but does not define it. Define an arena
type for allocating pointers to Regexp structures, following the pattern of lecture 5.

• Regexp *re_alloc(arena_t a);

Given an arena a, the re_alloc function should allocate a new Regexp and return a pointer to it. If
the arena lacks room to allocate a new Regexp, it should return NULL.

• void arena_free(arena_t a);

Given an arena a, the arena_free function should deallocate the arena and its associated storage.
This should be a simple, non-recursive function!

• Regexp *re_chr(arena_t a, char c);

Allocate a regexp matching the character c, allocating from the arena a. Return NULL if no memory
is available.

• Regexp *re_alt(arena_t a, Regexp *r1, Regexp *r2);

Allocate a regexp representing the alternative of r1 and r2 from the arena a. Return NULL if no
memory is available.

• Regexp *re_seq(arena_t a, Regexp *r1, Regexp *r2);

Allocate a regexp representing the sequencing of r1 and r2 from the arena a. Return NULL if no
memory is available.

• int re_match(Regexp *r, char *s, int i);

Given a regular expression r, a string s, and a valid index into the string i, this function should
return an integer. If the function returns a nonnegative j, then the regular expression should match
the substring running from i to j, including i but not j. (So if the re_match(r, s, 5) returns 8, then
the subrange s[5], s[6], s[7] should match the regexp r.)

It may help to look at the re_print function to see how to switch between the alternative branches
of the regexp type.

2


