
Notes for Programming in C Lab Session #4

13 October 2017

1 Introduction

The purpose of this lab session is to write some small programs that do pointer manipulations and dynamic
memory allocation.

2 Overview

In this lab, you will define some functions to work with finite sets of integers, represented as (unbalanced)
binary trees. Concretely, we will represent a set as a binary tree, in which each node contains an integer
n, and the left subtree contains the elements which are smaller than n, and the right subtree contains the
elements bigger than n.

For example, if we have the set {0, 1, 2, 3, 6, 8, 10}, we might represent it using the tree:
3

8

10

NULLNULL

6

NULLNULL

2

NULL1

NULLNULL

Note that each node of the tree contains an integer, and points to two subtrees. The subtrees can them-
selves be trees, or they can be the NULL value.

In C, a datatype for binary trees can be declared with the following structure declaration:

struct node {
struct node *left;
int value;
struct node *right;

};

typedef struct node Tree;

This defines a type struct node which consists of a left field containing a pointer to the left subtree,
and a value field containing an integer value, and a right field ointer to another struct node. (The
typedef defines a type abbrevation Tree standing for the structure type struct node.)

A finite set is then just a pointer to this structure type. Next, you will implement a small library of
functions whose prototypes and specifications are given in list.h, and whose implementation will go in
list.c.

1

3 Instructions

1. Download the lab4.tar.gz file from the class website.

2. Extract the file using the command tar xvzf lab4.tar.gz.

3. This will extract the lab4/ directory. Change into this directory using the cd lab4/ command.

4. In this directory, there will be files lab4.c, tree.h, and tree.c.

5. There will also be a file Makefile, which is a build script which can be invoked by running the
command make (without any arguments). It will automatically invoke the compiler and build the
lab4 executable.

6. Run the lab4 executable, and see if your program works. The expected correct output is in a comment
in the lab4.c file.

4 The Functions to Implement

4.1 Basic Exercises

The following functions should be relatively straightforward to implement. If you find yourself writing a
lot of code for these functions, you should step back and rethink your approach.

• int tree_member(int x, Tree *tree);

This function takes an integer x and a tree tree, and returns 0 if x does not occur in tree, and 1 if it
does occur. This function should not allocate or deallocate any memory at all.

• void tree_free(Tree *tree);

Given a tree tree as an argument, this function should free all of the memory associated with the
tree. This function should recursively call free on each reachable node.

• Tree *tree_insert(int x, Tree *tree);

This function should insert x into the tree tree if it is not present, and do nothing otherwise.

As an example, inserting 9 into the following tree:

3

8

10

NULLNULL

6

NULLNULL

2

NULL1

NULLNULL

should result in an updated tree:

2

3

8

10

NULL9

NULLNULL

6

NULLNULL

2

NULL1

NULLNULL

4.2 Challenge Exercises

Once you have done the basic exercises, you can try the challenge problem of removing an element from a
set, which involves more complex pointer manipulations and pattern of memory deallocations.

• void pop_minimum(Tree *tree, int *min, Tree **new_tree);

This function should take a nonempty tree tree as its first argument, and then it should (a) return
the minimum value held in the tree in the contents of min, and (b) modify tree so that it no longer
contains min, returning an updated pointer in new tree.

As an example, calling pop_minimum on the following tree

3

8

10

NULLNULL

6

NULLNULL

2

NULL1

NULLNULL

should return the value 1 in min, and modify the tree so it has the shape

3

8

10

NULLNULL

6

NULLNULL

2

NULLNULL

• Tree *tree_remove(int x, Tree *tree);

This function should remove x from the tree tree if it is present, and do nothing otherwise.

Hints:

1. The difficult case is when you have reached the node which needs to be removed.

2. It will be very helpful to use pop minimum as a subroutine – but remember you can only call it
on nonempty trees!

3

3. If you remove 3 from the tree

3

8

10

NULLNULL

6

NULLNULL

2

NULL1

NULLNULL

you should get

6

8

10

NULLNULL

NULL

2

NULL1

NULLNULL

4. If you remove 2 from the tree

3

8

10

NULLNULL

6

NULLNULL

2

NULL1

NULLNULL

you should get

3

8

10

NULLNULL

6

NULLNULL

1

NULLNULL

4

