
1 . 1

[10] STORAGE



1 . 2

OUTLINE

File Concepts

Filesystems

Naming Files

File Metadata

Directories

Name Space Requirements

Structure

Implementation

Files

Operations

Implementation

Access Control, Existence Control, Concurrency Control



2 . 1

FILE CONCEPTS

File Concepts
Filesystems
Naming Files
File Metadata

Directories
Files



2 . 2

FILESYSTEM
We will look only at very simple
filesystems here, having two
main components:

1. Directory Service, mapping names to file identifiers, and handling access and
existence control

2. Storage Service, providing mechanism to store data on disk, and including means
to implement directory service



2 . 3

WHAT IS A FILE?

The basic abstraction for non-volatile storage:

User abstraction — compare/contrast with segments for memory
Many different types:

Data: numeric, character, binary
Program: source, object, executable
"Documents"

Typically comprises a single contiguous logical address space

Can have varied internal structure:

None: a simple sequence of words or bytes
Simple record structures: lines, fixed length, variable length
Complex internal structure: formatted document, relocatable object file



2 . 4

WHAT IS A FILE?

OS split between text and binary is quite common where text files are treated as

A sequence of lines each terminated by a special character, and

With an explicit EOF character (often)

Can map everything to a byte sequence by inserting appropriate control characters,

and interpretation in code. Question is, who decides:

OS: may be easier for programmer but will lack flexibility

Programmer: has to do more work but can evolve and develop format



2 . 5

NAMING FILES
Files usually have at least two kinds of "name":

System file identifier (SFID): (typically) a unique integer value associated with a
given file, used within the filesystem itself
Human name, e.g. hello.java: what users like to use
May have a third, User File Identifier (UFID) used to identify open files in
applications

Mapping from human name to SFID is held in a directory, e.g.,

Note that directories are also non-volatile so they must
be stored on disk along with files — which explains why
the storage system sits "below" the directory service



2 . 6

FILE METADATA
NB. Having resolved the name to an SFID,
the actual mapping from SFID to File
Control Block (FCB) is OS and filesystem
specific

In addition to their contents and their
name(s), files typically have a number of
other attributes or metadata, e.g.,

Location: pointer to file location on device
Size: current file size
Type: needed if system supports different types
Protection: controls who can read, write, etc.
Time, date, and user identification: data for protection, security and usage
monitoring



3 . 1

DIRECTORIES

File Concepts
Directories

Name Space Requirements
Structure
Implementation

Files



3 . 2

REQUIREMENTS
A directory provides the means to translate a (user) name to the location of the file
on-disk. What are the requirements?

Efficiency: locating a file quickly.
Naming: user convenience

allow two (or, more generally, N) users to have the same name for different
files
allow one file have several different names

Grouping: logical grouping of files by properties, e.g., "all Java programs", "all
games"



3 . 3

EARLY ATTEMPTS
Single-level: one directory shared between all users

naming problem
grouping problem

Two-level directory: one directory per user
access via pathname (e.g., bob:hello.java)
can have same filename for different user
... but still no grouping capability.

Add a general hierarchy for more flexibility



3 . 4

STRUCTURE: TREE
Directories hold files or [further]
directories, reflecting structure of
organisation, users' files, etc

Create/delete files relative to a given
directory

Efficient searching and arbitrary grouping
capability

The human name is then the full path
name, though these can get unwiedly,

e.g., /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c.
Resolve with relative naming, login directory, current working directory. Sub-
directory deletion either by requiring directory empty, or by recursively deleting



3 . 5

STRUCTURE: DAG
Hierarchy useful but only allows one
name per file. Extend to directed acyclic
graph (DAG) structure: allow shared
subdirectories and files, and multiple
aliases for same thing

Manage dangling references: use back-
references or reference counts

Other issues include: deletion (more
generally, permissions) and knowing

when ok to free disk blocks; accounting and who gets "charged" for disk usage; and
cycles, and how we prevent them



3 . 6

DIRECTORY IMPLEMENTATION

Directories are non-volatile so store as "files" on disk, each with own SFID

Must be different types of file, for traversal

Operations must also be explicit as info in directory used for access control, or

could (eg) create cycles

Explicit directory operations include:

Create/delete directory

List contents

Select current working directory

Insert an entry for a file (a "link")



4 . 1

FILES
File Concepts
Directories
Files

Operations

Implementation

Access Control, Existence Control, Concurrency Control



4 . 2

OPERATIONS

Basic paradigm of use is: open, use, close

Opening or creating a file: 

UFID = open(<pathname>) or 

UFID = create(<pathname>)

Directory service recursively searching directories for components of

<pathname>
Eventually get SFID for file, from which UFID created and returned

Various modes can be used

Closing a file: status = close(UFID)

Copy [new] file control block back to disk and invalidate UFID



4 . 3

IMPLEMENTATION

Associate a cursor or file position with each open file (viz. UFID), initialised to start
of file

Basic operations: read next or write next, e.g., read(UFID, buf, nbytes),
or read(UFID, buf, nrecords)

Access pattern:

Sequential: adds rewind(UFID) to above
Direct Access: read(N) or write(N) using seek(UFID, pos)
Maybe others, e.g., append-only, indexed sequential access mode (ISAM)



4 . 4

ACCESS CONTROL

File owner/creator should be able to control what can be done, by whom

File usually only accessible if user has both directory and file access rights
Former to do with lookup process — can't look it up, can't open it
Assuming a DAG structure, do we use the presented or the absolute path

Access control normally a function of directory service so checks done at file open
time

E.g., read, write, execute, (append?), delete, list, rename
More advanced schemes possible (see later)



4 . 5

EXISTENCE CONTROL

What if a user deletes a file?

Probably want to keep file in existence while there is a valid pathname
referencing it
Plus check entire FS periodically for garbage
Existence control can also be a factor when a file is renamed/moved.

 

CONCURRENCY CONTROL

Need some form of locking to handle simultaneous access

Can be mandatory or advisory
Locks may be shared or exclusive
Granularity may be file or subset



5

SUMMARY
File Concepts

Filesystems

Naming Files

File Metadata

Directories

Name Space Requirements

Structure

Implementation

Files

Operations

Implementation

Access Control, Existence Control, Concurrency Control


