
1 . 1

[08] SEGMENTATION

1 . 2

OUTLINE

Segmentation
An Alternative to Paging

Implementing Segments
Segment Table
Lookup Algorithm

Protection and Sharing
Sharing Subtleties
External Fragmentation

Segmentation vs Paging
Comparison
Combination

Summary
Extras

Dynamic Linking & Loading

2 . 1

SEGMENTATION

Segmentation
An Alternative to Paging

Implementing Segments
Protection and Sharing
Segmentation vs Paging
Summary
Extras

2 . 2

AN ALTERNATIVE TO PAGING

View memory as a set of
segments of no particular size,
with no particular ordering

This corresponds to typical
modular approaches taken to
program development

The length of a segment
depends on the complexity of
the function (e.g., sqrt)

2 . 3

WHAT IS A SEGMENT?

Segmentation supports the user-view of memory that the logical address space

becomes a collection of (typically disjoint) segments

Segments have a name (or a number) and a length. Addresses specify segment, and

offset within segment

To access memory, user program specifies segment + offset, and the compiler (or, as

in MULTICS, the OS) translates

This contrasts with paging where the user is unaware of memory structure —

everything is managed invisibly by the OS

3 . 1

IMPLEMENTING SEGMENTS
Segmentation
Implementing Segments

Segment Table
Lookup Algorithm

Protection and Sharing
Segmentation vs Paging
Summary
Extras

3 . 2

IMPLEMENTING SEGMENTS
Logical addresses are pairs, (segment, offset)

For example, the compiler might construct distinct segments for global variables,
procedure call stack, code for each procedure/function, local variables for each
procedure/function

Finally the loader takes each segment and maps it to a physical segment number

3 . 3

IMPLEMENTING SEGMENTS
Segment Access Base Size Others!

Maintain a Segment Table for each process:

If there are too many segments then the table is kept in memory, pointed to by
ST Base Register (STBR)
Also have an ST Length Register (STLR) since the number of segments used by
diferent programs will diverge widely
ST is part of the process context and hence is changed on each process switch
ST logically accessed on each memory reference, so speed is critical

3 . 4

IMPLEMENTING SEGMENTS: ALGORITHM
1. Program presents address .

2. If STLR then give up

3. Obtain table entry at reference +STBR, a tuple of form

4. If then this is a valid address at location , else fault

The two operations (concatenation) and can be done

simultaneously to save time

Still requires 2 memory references per lookup though, so care needed

E.g., Use a set of associative registers to hold most recently used ST entries

Similar performance gains to the TLB description earlier

4 . 1

PROTECTION AND SHARING
Segmentation
Implementing Segments
Protection and Sharing

Sharing Subtleties
External Fragmentation

Segmentation vs Paging
Summary
Extras

4 . 2

PROTECTION

Segmentation's big advantage is to provide protection between components

That protection is provided per segment; i.e. it corresponds to the logical view

Protection bits associated with each ST entry checked in usual way, e.g., instruction
segments should not be self-modifying, so are protected against writes

Could go further — e.g., place every array in its own segment so that array limits can
be checked by the hardware

4 . 3

SHARING

Segmentation also facilitates sharing of code/data:

Each process has its own STBR/STLR
Sharing is enabled when two processes have entries for the same physical
locations
Sharing occurs at segment level, with each segment having own protection bits

For data segments can use copy-on-write as per paged case
Can share only parts of programs, e.g., C library but there are subtleties

4 . 4

SHARING: SUBTLETIES

For example, jumps within shared code
Jump specified as a condition + transfer address, i.e., (segment, offset)
Segment is (of course) this one
Thus all programs sharing this segment must use the same number to refer to
it, else confusion will result
As the number of users sharing a segment grows, so does difficulty of finding
a common shared segment number
Thus, specify branches as PC-relative or relative to a register containing the
current segment number
(Read only segments containing no pointers may be shared with different seg
numbers)

4 . 5

SHARING SEGMENTS

Wasteful (and dangerous) to store common information on shared segment in
each process segment table
Assign each segment a unique System Segment Number (SSN)
Process Segment Table simply maps from a Process Segment Number (PSN) to
SSN

4 . 6

EXTERNAL FRAGMENTATION RETURNS

Long term scheduler must find spots in memory for all segments of a program.
Problem is that segments are variable size — thus, we must handle fragmentation

1. Usually resolved with best/first fit algorithm
2. External frag may cause process to have to wait for sufficient space
3. Compaction can be used in cases where a process would be delayed

Tradeoff between compaction/delay depends on average segment size

Each process has just one segment reduces to variable sized partitions
Each byte has its own segment separately relocated quadruples memory use!
Fixed size small segments is equivalent to paging!
Generally, with small average segment sizes, external fragmentation is small —
more likely to make things fit with lots of small ones (box packing)

5 . 1

SEGMENTATION VS PAGING

Segmentation
Implementing Segments
Protection and Sharing
Segmentation vs Paging

Comparison
Combination

Summary
Extras

5 . 2

SEGMENTATION VERSUS PAGING

Protection, Sharing, Demand etc are all per segment or page, depending on

scheme

For protection and sharing, easier to have it per logical entity, i.e., per segment

For allocation and demand access (and, in fact, certain types of sharing such as

COW), we prefer paging because:

Allocation is easier

Cost of sharing/demand loading is minimised

logical view allocation

segmentation good bad

paging bad good

5 . 3

COMBINING SEGMENTATION AND PAGING

1. Paged segments, used in Multics, OS/2
Divide each segment into pages, where is the limit (length)
of the segment
Provision one page table per segment
Unfortunately: high hardware cost and complexity; not very portable

2. Software segments, used in most modern OSs
Consider pages to be a segment
OS must ensure protection and sharing kept consistent over region
Unfortunately, leads to a loss of granularity
However, it is relatively simple and portable

Arguably, main reason hardware segments lost is portability: you can do software
segments with just paging hardware, but cannot (easily) do software paging with
segmentation hardware

6 . 1

SUMMARY
Segmentation
Implementing Segments
Protection and Sharing
Segmentation vs Paging
Summary
Extras

6 . 2

SUMMARY: VIRTUAL ADDRESSING
Direct access to physical memory is not great as have to handle:

Contiguous allocation: need a large lump, end up with external fragmentation
Address binding: handling absolute addressing
Portability: how much memory does a "standard" machine have?

Avoid problems by separating concepts of virtual (logical) and physical addresses
(Atlas computer, 1962)

Needham's comment

"every problem in computer science can be solved by an
extra level of indirection"

6 . 3

SUMMARY: VIRTUAL TO PHYSICAL ADDRESS MAPPING

Runtime mapping of logical to physical addresses handled by the MMU. Make
mapping per-process, then:

Allocation problem split:
Virtual address allocation easy
Allocate physical memory 'behind the scenes'

Address binding solved:
Bind to logical addresses at compile-time
Bind to real addresses at load time/run time

Modern operating systems use paging hardware and fake out segments in
software

6 . 4

SUMMARY: IMPLEMENTATION CONSIDERATIONS

Hardware support

Simple base register enough for partitioning
Segmentation and paging need large tables

Performance

Complex algorithms need more lookups per reference plus hardware support
Simple schemes preferred eg., simple addition to base

Fragmentation: internal/external from fixed/variable size allocation units
Relocation: solves external fragmentation, at high cost

Logical addresses must be computed dynamically, doesn't work with load
time relocation

Swapping: can be added to any algorithm, allowing more processes to access
main memory
Sharing: increases multiprogramming but requires paging or segmentation
Protection: always useful, necessary to share code/data, needs a couple of bits

7 . 1

EXTRAS
Segmentation
Implementing Segments
Protection and Sharing
Segmentation vs Paging
Summary
Extras

Dynamic Linking & Loading

7 . 2

DYNAMIC LINKING
Relatively new appearance in OS (early 80's). Uses shared objects/libraries (Unix), or

dynamically linked libraries (DLLs; Windows). Enables a compiled binary to invoke, at

runtime, routines which are dynamically linked:

If a routine is invoked which is part of the dynamically linked code, this will be

implemented as a call into a set of stubs

Stubs check if routine has been loaded

If not, linker loads routine (if necessary) and replaces stub code by routing

If sharing a library, the address binding problem must also be solved, requiring

OS support: in the system, only the OS knows which libraries are being shared

among which processes

Shared libs must be stateless or concurrency safe or copy on write

Results in smaller binaries (on-disk and in-memory) and increase flexibility (fix a

bug without relinking all binaries)

7 . 3

DYNAMIC LOADING

At runtime a routine is loaded when first invoked

The dynamic loader performs relocation on the fly

It is the responsibility of the user to implement loading

OS may provide library support to assist user

8

SUMMARY
Segmentation

An Alternative to Paging
Implementing Segments

Segment Table
Lookup Algorithm

Protection and Sharing
Sharing Subtleties
External Fragmentation

Segmentation vs Paging
Comparison
Combination

Summary
Extras

Dynamic Linking & Loading

