
Lecture 6

Lifecycle of an Object

We met constructors earlier in the course as methods
that initialise objects. We can now add a bit more
detail. When you request a new object, Java will do
quite a lot of work:

Creating Objects in Java
new MyObject()

Load
MyObject.class

Create
java.lang.Class

object

Allocate any
static fields

Run static
initialiser blocks

Allocate memory
for object

Run non-static
initialiser blocks

Run constructor

Yes

No Is MyObject already loaded
in memory?

Note that Java maintains a java.lang.Class object for
every class it loads into memory from a .class file. This
object actually allows you query things about the class,
such as its name or to list all the methods it has. The
ability to do inspect (and possibly modify!) a pro-
gram’s structure is a feature called reflection. It’s quite
a powerful feature that exists in some (but certainly
not all) languages. It’s out of scope here but worth
exploring if you’re interested.

Initialisation Example

public class Blah {
 private int mX = 7;
 public static int sX = 9;

 {
 mX=5;
 }

 static {
 sX=3;
 }

 public Blah() {
 mX=1;
 sX=9;
 }
}

Blah b = new Blah();
Blah b2 = new Blah();

1. Blah loaded
2. sX created
3. sX set to 9
4. sX set to 3
5. Blah object allocated
6. mX set to 7
7. mX set to 5
8. Constructor runs (mX=1, sX=9)
9. b set to point to object

10. Blah object allocated
11. mX set to 7
12. mX set to 5
13. Constructor runs (mX=1, sX=9)
14. b2 set to point to object

Things get even more complex when we throw in some
inheritance:

Constructor Chaining

 When you construct an object of a type with
parent classes, we call the constructors of all of
the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

In reality, Java asserts that the first line of a construc-
tor always starts with super(), which is a call to the
parent constructor (which itself starts with super(),
etc.). If it does not, the compiler adds one for you:

public class Person {

public Person() {

35

}

}

becomes:

public class Person {

public Person() {

super();

}

}

C++

In other languages that support multiple inher-
itance, this becomes more complex since there
may be more than one parent and a simple key-
word like super isn’t enough. Instead they sup-
port manually specifying the constructor param-
eters for the parents. E.g. for C++:

class Child : public Parent1, Parent2 {

public:

Child() : Parent1("Alice"),

Parent2("Bob") {...}

}

Chaining without Default Constructors

 What if your classes have explicit constructors that take
arguments? You need to explicitly chain

 Use super in Java:

Person

Student

-mName : String
+Person(String name)

+Student()

public Person (String name) {
 mName=name;
}

public Student () {
 super(“Bob”);
}

Deterministic Destruction
 Objects are created, used and (eventually) destroyed. Destruction is very

language­specific

 Deterministic destuction is what you would expect

 Objects are deleted at predictable times

 Perhaps manually deleted (C++):

 Or auto­deleted when out of scope (C++):

void UseRawPointer()
{
 MyClass *mc = new MyClass();
 // ...use mc...
 delete mc;
}

void UseSmartPointer()
{
 unique_ptr<MyClass> *mc = new MyClass();
 // ...use mc...
} // mc deleted here

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed

 Allows us to release any resources (open files, etc) or
memory that we might have created especially for the
object

class FileReader {
 public:

 // Constructor
 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 // Destructor
 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

int main(int argc, char ** argv) {

 // Construct a FileReader Object
 FileReader *f = new FileReader();

 // Use object here
 ...

 // Destruct the object
 delete f;

}

C++

It will shortly become apparent why I used C++ and
not Java for this example.

Non­Deterministic Destruction
 Deterministic destruction is easy to understand and seems simple

enough. But it turns out we humans are rubbish of keeping track of
what needs deleting when

 We either forget to delete (memory leak) or we delete multiple →
times (crash)→

 We can instead leave it to the system to figure out when to delete

 “Garbage Collection”
 The system someohow figures out when to delete and does it for us

 In reality it needs to be cautious and sure it can delete. This leads
to us not being able to predict exactly when something will be
deleted!!

 This is the Java approach!!

36

What about Destructors?

 Conventional destructors don’t make
sense in non­deterministic systems
 When will they run?
 Will they run at all??

 Instead we have finalisers: same concept
but they only run when the system deletes
the object (which may be never!)

OK, so a finalizer is just a rebadged destructor, but the
rebadging is important. It reminds us as programmers
that it won’t run deterministically. Because you can’t
tell when finalizer methods will get called in Java, their
value is greatly reduced. It’s actually quite rare to see
them in Java in my experience.

Garbage Collection

 So how exactly does garbage collection work? How can a system
know that something can be deleted?

 The garbage collector is a separate process that is constantly
monitoring your program, looking for things to delete

 Running the garbage collector is obviously not free. If your
program creates a lot of short­term objects, you will soon notice
the collector running

 Can give noticeable pauses to your program!
 But minimises memory leaks (it does not prevent them...)

 There are various algorithms: we’ll look at two that can be found
in Java
 Reference counting
 Tracing

Reference Counting

 Java’s original GC. It keeps track of how many
references point to a given object. If there are none,
the programmer can't access that object ever again so
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Note that reference counting has an associated cost

- every object needs more memory (to store the ref-
erence count) and we have to monitor changes to all
references to keep the counts up to date.

Reference Counting Gotcha

 Circular references are a pain

Person object
#ref = 2

r1 = null;
r2 = null;

r1

Person object
#ref = 2

field

field

r2

Person object
#ref = 1

Person object
#ref = 1

field

field

Objects
unreachable!!

Tracing

 Start with a list of all references you can get to

 Follow all refrences recursively, marking each object

 Delete all objects that were not marked

object

object

object

object
x

y

z

object

object
Unreachable
so deleted

37

Lecture 7

Java Collections and Object Comparison

Java Class Library

 Java the platform contains around 4,000
classes/interfaces
 Data Structures

 Networking, Files

 Graphical User Interfaces

 Security and Encryption

 Image Processing

 Multimedia authoring/playback

 And more...

 All neatly(ish) arranged into packages (see API docs)

Remember Java is a platform, not just a programming
language. It ships with a huge class library : that is to
say that Java itself contains a big set of built-in classes
for doing all sorts of useful things like:

• Complex data structures and algorithms

• I/O (input/output: reading and writing files, etc)

• Networking

• Graphical interfaces

Of course, most programming languages have built-
in classes, but Java has a big advantage. Because
Java code runs on a virtual machine, the underlying
platform is abstracted away. For C++, for example,
the compiler ships with a fair few data structures, but
things like I/O and graphical interfaces are completely
different for each platform (Windows, OSX, Linux,
whatever). This means you usually end up using lots
of third-party libraries to get such extras—not so in
Java.

There is, then, good reason to take a look at the Java
class library to see how it is structured.

7.1 Collections and Generics

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of

things (objects)
 Usually when we have some grouping we

want to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collection. They
define a set of operations that all classes
in the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

The Java Collections framework is a set of interfaces
and classes that handles groupings of objects and al-
lows us to implement various algorithms invisibly to
the user (you’ll learn about the algorithms themselves
next term).

Sets

<<interface>> Set
 A collection of elements with no

duplicates that represents the
mathematical notion of a set

 TreeSet: objects stored in order

 HashSet: objects in unpredictable order
but fast to operate on (see Algorithms
course)

A
B

C

TreeSet<Integer> ts = new TreeSet<Integer>();
ts.add(15);
ts.add(12);
ts.contains(7); // false
ts.contains(12); // true
ts.first(); // 12 (sorted)

38

Lists

<<interface>> List
 An ordered collection of elements that may

contain duplicates

 LinkedLIst: linked list of elements

 ArrayList: array of elements (efficient access)

 Vector: Legacy, as ArrayList but threadsafe

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.add(1.0);
ll.add(0.5);
ll.add(3.7);
ll.add(0.5);
ll.get(1); // get element 2 (==3.7)

Queues

<<interface>> Queue
 An ordered collection of elements that may contain

duplicates and supports removal of elements from
the head of the queue

 offer() to add to the back and poll() to take from the
front

 LinkedList: supports the necessary functionality

 PriorityQueue: adds a notion of priority to the queue
so more important stuff bubbles to the top

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.offer(1.0);
ll.offer(0.5);
ll.poll(); // 1.0
ll.poll(); // 0.5

Maps

<<interface>> Map

 Like dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and
(sometimes) null.

 TreeMap: keys kept in order

 HashMap: Keys not in order,
efficient (see Algorithms)

K1
A

B

B

K3 K2

TreeMap<String, Integer> tm = new TreeMap<String,Integer>();
tm.put(“A”,1);
tm.put(“B”,2);
tm.get(“A”); // returns 1
tm.get(“C”); // returns null
tm.contains(“G”); // false

There are other interfaces in the Collections class, and
you may want to poke around in the API documenta-
tion. In day-to-day programming, however, these are
likely to be the interfaces you use.

Now, don’t worry about too much what’s going on be-
hind the scenes (that comes in the Algorithms course),
just recognise that there are a series of implementa-

tions in the class library that you can use, and that
each has different properties. You should get into
the habit of reading the API descriptions to find best
choice for your specific problem.

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList<Integer> list = new LinkedList<Integer>();
...
for (int i=0; i<list.size(); i++) {
 Integer next = list.get(i);
}

LinkedList list = new LinkedList();
...
for (Integer i : list) {
 ...
}

The foreach notation works for arrays too and it’s par-
ticularly neat when we have nested iteration. E.g. it-
eration over all students and their subjects:

for (Student stu : studentlist)

for (Subject sub : subjectlist)

getMarks(stu, sub);

versus:

for (int i=0; i<studentlist.size(); i++) {

Student stu = studentlist.get(i);

for (int j=0; i<subjectlist.size(); i++) {

Subject sub = subjectlist.get(j);

getMarks(stu, sub);

}

}

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {
 If (i==3) list.remove(i);
}

Iterator<Integer> it = list.iterator();

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}

while(it.hasNext()) {
 it.remove();
}

39

Note that the foreach structure isn’t useful with
Iterators. So we sacrifice some code readability for the
ability to adjust the Collection’s structure as we go.

7.2 Comparing Objects

Comparing Objects

 You often want to impose orderings on
your data collections

 For TreeSet and TreeMap this is automatic

 For other collections you may need to
explicitly sort

 For numeric types, no problem, but how
do you tell Java how to sort Person
objects, or any other custom class?

TreeMap<String, Person> tm = ...

LinkedList<Person> list = new LinkedList<Person>();
//...
Collections.sort(list);

Collections are great, but often you end up needing to
impose orderings (i.e. sort). Examples include print-
ing users by surname, or computing numerical metrics
such as the median.

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive

 But what does (ref1==ref2) do??
 Test whether they point to the same object?
 Test whether the objects they point to have the

same state?

The problem is that we deal with references to objects,
not objects. So when we compare two things, do we
compare the references of the objects they point to?
As it turns out, both can be useful so we want to
support both.

7.2.1 Object Equality

Reference Equality

 r1==r2, r1!=r2
 These test reference equality
 i.e. do the two references point ot the same

chunk of memory?

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references differ)

True (references differ)

True

Value Equality

 Use the equals() method in Object

 Default implementation just uses reference
equality (==) so we have to override the method

public EqualsTest {
 public int x = 8;

 @Override
 public boolean equals(Object o) {
 EqualsTest e = (EqualsTest)o;
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 System.out.println(t1==t2);
 System.out.println(t1.equals(t2));
 }
}

I find this mildly irritating: every class you use will
support equals() but you’ll have to check whether or
not it has been overridden to do something other than
==. Personally, I try to limit my use of equals() to
objects from core Java classes, where I trust it to have
been done properly.

Aside: Use The Override Annotation

 It's so easy to mistakenly write:

public EqualsTest {
 public int x = 8;

 public boolean equals(EqualsTest e) {
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 Object o1 = (Object) t1;
 Object o2 = (Object) t2;
 System.out.println(t1.equals(t2));
 System.out.println(o1.equals(o2));
 }
}

40

Aside: Use The Override Annotation II

 Annotation would have picked up the mistake:

public EqualsTest {
 public int x = 8;

 @Override
 public boolean equals(EqualsTest e) {
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 Object o1 = (Object) t1;
 Object o2 = (Object) t2;
 System.out.println(t1.equals(t2));
 System.out.println(o1.equals(o2));
 }
}

What’s happening here is that the signature of our
overriding method doesn’t match the one in Object.
So, Java actually overloads it, keeping both methods.
By using @Override when we mean to override not over-
load, the compiler will spot our error.

For the geeks out there (i.e. non-examinable), we
could write a compiler that spots that EqualsTest is a
subclass of Object and therefore do overriding. This is
called covariant parameter types and is not supported
by Java.

Java Quirk: hashCode()

 Object also gives classes hashCode()
 Code assumes that if equals(a,b)

returns true, then a.hashCode() is the
same as b.hashCode()

 So you should override hashCode() at
the same time as equals()

I don’t want to go into this in too much detail since you
haven’t yet met hashes (it’s in the Algorithms course
next term). For now, just accept that a hash is a func-
tion that takes in chunks of information (e.g. all the
fields in an object) and spits out a number. Java uses
this in its HashMap implementation and other places
as a shortcut to having to sequentially compare each
field. I mention it here really for completeness so that
if any of you override equals() in production code then
you know you should also override hashCode(). Details
of doing so are easily found on the web and in books
(because it’s a very common mistake to make!).

7.3 Less Than and Greater
Than

In order to sort your classes using the built in classes,
you need to write something that allows two objects to
be ordered. Often our classes have a natural ordering
e.g. people are usually sorted first by surname and
then by forename. We can build-in natural ordering
to our classes using the Comparable interface:

Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework

 Doesn't just tell us true or false, but smaller,
same, or larger: useful for sorting.

 Returns an integer, r:
 r<0 This object is less than obj

 r==0 This object is equal to obj

 r>0 This object is greater than obj

Comparable<T> Interface II
public class Point implements Comparable<Point> {
 private final int mX;
 private final int mY;
 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x
 public int compareTo(Point p) {
 if (mY>p.mY) return 1;
 else if (mY<p.mY) return -1;
 else {
 if (mX>p.mX) return 1;
 else if (mX<p.mX) return -1;
 else return 0.
 }
 }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

This is all very well, but sometimes we might want to
sort with a different ordering (e.g. sort just by fore-
name). Java Collections lets us do this by supplying a
custom piece of code for the ordering: a Comparator :

41

Comparator<T> Interface I

int compare(T obj1, T obj2)

 Also part of the Collections framework and
allows us to specify a specific ordering for a
particular job

 E.g. a Person might have natural ordering that
sorts by surname. A Comparator could be
written to sort by age instead...

Comparator<T> Interface II

public class Person implements Comparable<Person> {
 private String mSurname;
 private int mAge;
 public int compareTo(Person p) {
 return mSurname.compareTo(p.mSurname);
 }
}

public class AgeComparator implements Comparator<Person> {
 public int compare(Person p1, Person p2) {
 return (p1.mAge-p2.mAge);
 }
}

…
ArrayList<Person> plist = …;
…
Collections.sort(plist); // sorts by surname
Collections.sort(plist, new AgeComparator()); // sorts by age

Note that a natural ordering uses compareTo() whilst
a comparator uses compare().

7.4 Operator Overloading

Operator Overloading

 Some languages have a neat feature that
allows you to overload the comparison
operators. e.g. in C++

class Person {
 public:
 Int mAge
 bool operator==(Person &p) {
 return (p.mAge==mAge);
 };
 }

Person a, b;
b == a; // Test value equality

Java doesn’t have this, but it’s good to know what it

is at this stage.

42

Lecture 8

Error Handling Revisited

As you have almost certainly discovered, errors crop
up all over the place when developing software. We
see various types:

Syntactic errors (missing brackets or whatever) are
usually quite easy to spot because you get a nice
explanatory compiler warning (ahem... unless
you’re using poly/ML...).

Logical errors (i.e. bugs) are more problematic, not
least because comprehensive testing (checking the
output for every possible input and system state)
is usually infeasible for anything but toy pro-
grams.

External errors occur for processes our code relies
on but we don’t control. Examples might be a
failing hard disk or an overheating CPU causing
them to do things that shouldn’t be possible.

So what do you do? Firstly you do what you can to
minimise the chance of bugs. Secondly, you accept
that there will still be problems (if nothing else the
external errors will persist) and you use techniques
to handle them. You’ve already seem the latter with
ML’s exceptions: we’ll look at Java’s exceptions here
too, but first let’s consider ways to reduce the bugs in
the code you deliver.

8.1 Minimising Bugs

8.1.1 Modular (Unit) Testing

OOP (strongly) pushes you to develop uncoupled
chunks of code in the form of classes. Each class should
be testable (mostly) independently of the others. It is
much easier to comprehensively test lots of small bits
of code and then stitch them together than the stitched
result!

8.1.2 Using Assertions

When you are debugging an algorithm, it can be useful
to use assertions at various stages to mark invariants
(things that should be true if your algorithm is work-
ing). You’ll see these next term in the Algorithms
course.

8.1.3 Defensive Programming Styles

You can also learn useful habits for each language that
can reduce errors. In C for example, if (exp) is true
whenever exp is greater than 0. The problem with this
is that you can accidentally do an assignment without
realising it:

if (x=5) {...}

else {....}

Here the programmer presumably wanted to test
whether x is 5. What actually happens is x is set to
5 and the expression itself is evaluated as 5, or always
true. All because they used = and not == by accident.

But you can remove this (very common) error alto-
gether by always writing (5==x) and not (x==5).
Then the error will be caught by the compiler because
(5=x) is not valid syntax!

8.1.4 Pair Programming etc.

Another quite effective way to spot bugs is via pair
programming. Here you program in pairs insofar as
one person writes code, while the other watches over
their shoulder, looking for errors or bugs. The writer
and the watcher switch roles regularly. Various other
such agile programming techniques exist.

43

8.2 Dealing with Errors

8.2.1 Return Codes

Return Codes

 The traditional imperative way to handle errors is to
return a value that indicates success/failure/error

 Problems:
 Could ignore the return value
 Have to keep checking what the return values are

meant to signify, etc.
 The actual result often can't be returned in the same

way

public int divide(double a, double b) {
 if (b==0.0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Many older languages (C included) have no explicit
mechanism for error handling, Instead the common ap-
proach is to return the error status via the normal re-
turn type: a return code. If your function isn’t proper
and its ‘result’ is a side effect (i.e. it has a void return
type in Java) then we can just return the error code:

int setValue(LinkedList<int> list,

int element, int value) {

if (list.size()>element) {

list.set(element,value);

return 0; // no error to signal

}

else return -1; // this element doesn’t exist

}

Here the function can only return 0 or -1, the latter
being a signal that there was an error (the element
didn’t exist).

If you have a function that naturally returns a result,
you can pick some result values that are used (only)
to signal errors:

float sqrt(float a) {

if (a<0.0) return -1.0;

else {

...

}

}

Here the sqrt function only returns positive roots so
we can repurpose all negative floats to signal errors.

float sqrt(float a) {

if (a<0.0) return -1.0;

else {

...

}

}

If the return type isn’t something we can repurpose
(e.g. a custom class) then we can instead pass the
output by reference and have the function return an
integer to indicate the error state. E.g,

SomeCustomClass sqrt(float a) {

return new SomeCustomClass(...);

}

becomes

int func(float a, SomeCustomClass result) {

if (a<0.0) return -1.0;

else result.set(...);

return 0;

}

You might see functions that return null if they have
an error. This is a very bad practice since it relies on
the programmer using the function to check for null.
If they don’t, they’ll likely try to dereference null and
their program will die...

In fact, this is a larger problem with the general ap-
proach. We are dependent on the programmer test-
ing the return value. Two problems arise: firstly, they
could neglect to check (really common); secondly, they
end up with really nasty looking code such as:

int retval = somefunc();

if (retval==-1) {

// handle error type 1

}

else if (retval==-2) {

// handle error type 2

}

else if (retval==-3) {

// handle error type 3

}

Here, just writing one line to call one function results
in a screen-worth of error handling code. This constant
mixing of code and error handling makes the code all
but unreadable.

44

8.2.2 Deferred Error Handling

Deferred Error Handling

 A similar idea (with the same issues) is to set some state
in the system that needs to be checked for errors.

 C++ does this for streams:

ifstream file("test.txt");
if (file.good())
{
 cout << "An error occurred opening the file" << endl;
}

8.2.3 Exceptions

Exceptions

 An exception is an object that can be thrown or raised by
a method when an error occurs and caught or handled
by the calling code

 Example usage:

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Of course, you already met Java’s exceptions in the
pre-arrival course, as well as ML’s in FoCS. We’ll cover
the Java concepts in a little more depth here, whilst
recapping the content you’ve done. Note there is a
tendency to use the terminology throw/catch rather
than raise/handle in OOP languages—I don’t know
why. First some recap:

Flow Control During Exceptions

 When an exception is thrown, any code left to run in the
try block is skipped

double z=0.0;
boolean failed=false;
try {
 z = divide(5,0);
 z = 1.0;
}
catch(DivideByZeroException d) {
 failed=true;
}
z=3.0;
System.out.println(z+” “+failed);

Throwing Exceptions

 An exception is an object that has Exception as
an ancestor

 So you need to create it (with new) before
throwing

double divide(double x, double y) throws DivideByZeroException {
 if (y==0.0) throw new DivideByZeroException();
 else return x/y;
}

Multiple Handlers

 A try block can result in a range of different exceptions.
We test them in sequence

try {
 FileReader fr = new FileReader(“somefile”);
 Int r = fr.read();
}
catch(FileNoteFound fnf) {
 // handle file not found with FileReader
}
catch(IOException d) {
 // handle read() failed
}

45

finally

 With resources we often want to ensure
that they are closed whatever happens

try {
 fr,read();
 fr.close();
}
catch(IOException ioe) {
 // read() failed but we must still close the FileReader
 fr.close();
}

finally II

 The finally block is added and will always
run (after any handler)

try {
 fr,read();
}
catch(IOException ioe) {
 // read() failed
}
finally {
 fr.close();
}

Note that once any catch block is matched, the re-
maining catch blocks are skipped. Whilst you already
know about the flow control, you hadn’t considered
creating your own exceptions:

Creating Exceptions

 Just extend Exception (or RuntimeException if you need it to be
unchecked). Good form to add a detail message in the
constructor but not required.

 You can also add more data to the exception class to provide
more info on what happened (e.g. store the numerator and
denominator of a failed division)

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
 public ComputationFailed(String msg) {
 super(msg);
 }
}

Exception Hierarchies

 You can use inheritance hierarchies

 And catch parent classes

public class MathException extends Exception {...}
public class InfiniteResult extends MathException {…}
public class DivByZero extends MathException {…}

try {
 …
}
catch(InfiniteResult ir) {
 // handle an infinite result
}
catch(MathException me) {
 // handle any MathException or DivByZero
}

Checked vs Unchecked Exceptions
 Checked: must be handled or passed up.

 Used for recoverable errors
 Java requires you to declare checked exceptions that

your method throws
 Java requires you to catch the exception when you call

the function

 Unchecked: not expected to be handled. Used for
programming errors
 Extends RuntimeException
 Good example is NullPointerException

double somefunc() throws SomeException {}

There is an ongoing debate about the value of checked
exceptions and they feature in some OOP languages
but not others. Most of the time you’ll be writing
and dealing with checked exceptions in Java. You’ll
encounter unchecked exceptions only when you mess
up in your code.

Aside: It turns out with Java they decided
that RuntimeException should inherit from
Exception. This means that if you ever write
catch(Exception e) {...} then you will also catch
the unchecked exceptions. So don’t ever write that
unless you know what you are doing!

46

Evil I: Exceptions for Flow Control

 At some level, throwing an exception is like a GOTO

 Tempting to exploit this

 This is not good. Exceptions are for exceptional
circumstances only
 Harder to read
 May prevent optimisations

try {
 for (int i=0; ; i++) {
 System.out.println(myarray[i]);
 }
}
catch (ArrayOutOfBoundsException ae) {
 // This is expected
}

The code readability argument should be obvious but
the second argument warrants more discussion. If you
Google the notion of flow control with exceptions, you
will probably find many comments that suggest excep-
tion throwing is very slow compared to ‘normal’ code
execution. This is attributed variously to the need to
create an Exception object; the need to create a stack
trace; or even just the need to create a message string.
Some people report Exception handling was 50 times
slower on the first JVMs!

Now, you could write a JVM that handled exception
throwing efficiently, such that code like that in the
slide would carry little performance penalty. But the
crucial point is that there is no guarantee that a JVM
will do so (and many still don’t). Exceptions are in-
tended to be rare occurrences and it is perfectly rea-
sonable (if not natural) for a JVM creator to assume
this and therefore not need to worry about optimising
exception handling. Bottom line: this smells bad.

Evil II: Blank Handlers

 Checked exceptions must be handled

 Constantly having to use try...catch blocks to do this can be
annoying and the temptation is to just gaffer­tape it for now

 ...but we never remember to fix it and we could easily be
missing serious errors that manifest as bugs later on that are
extremely hard to track down

try {
 FileReader fr = new FileReader(filename);
}
catch (FileNotFound fnf) {
}

This is a bad habit that novices tend to adopt—
try not to develop it yourself. Eclipse at least
discourages blank handlers, automatically filling in
e.printStackTrace() so there’s some record of the

problem printed to the screen. However, in large pro-
grams, where there’s often lots of debug output flow-
ing to the console, these messages are easily missed...
Better to fill in your handlers!

Evil III: Circumventing Exception Handling

 Just don't.

try{
 // whatever
}
catch(Exception e) {}

Advantages of Exceptions

 Advantages:
 Class name can be descriptive (no need to look up error

codes)
 Doesn't interrupt the natural flow of the code by requiring

constant tests
 The exception object itself can contain state that gives

lots of detail on the error that caused the exception
 Can't be ignored, only handled

http://java.sun.com/docs/books/tutorial/

essential/exceptions/

47

http://java.sun.com/docs/books/tutorial/essential/exceptions/
http://java.sun.com/docs/books/tutorial/essential/exceptions/

8.2.4 Assertions

Assertions

 Assertions are a form of error checking designed for
debugging (only)

 They are a simple statement that evaluates a boolean: if it's
true nothing happens, if it's false, the program ends.

 In Java:

assert (x>0);

// or

assert (a==0) : “Some error message here”;

Assertions are a simple addition to many languages
that can really help development, but they comple-
ment exceptions (or other error handling techniques)
rather than replace them.

Assertions are NOT for Production Code!

 Assertions are there to help you check the logic of your code is
correct i.e. when you're trying to get an algorithm working

 They should be switched OFF for code that gets released
(“production code”)

 In Java, the JVM takes a parameter that enables (­ea) or
disables (­da) assertions. The default is for them to be disabled.

> java -ea SomeClass

> java -da SomeClass

This is important: assertions will kill your program if
they detect an error. There’s no opportunity to handle
the error so they’re just for development, not produc-
tion.

As Oracle Puts It

“Assertions are meant to require that the program be
consistent with itself, not that the user be consistent

with the program”

Great for Postconditions

 Postconditions are things that must be true at the end of an
algorithm/function if it is functioning correctly

 E.g.

public float sqrt(float x) {
 float result = ….
 // blah
 assert(result>=0.f);
}

Sometimes for Preconditions

 Preconditions are things that are assumed true at the start of
an algorithm/function

 E.g.

 BUT you shouldn't use assertions to check for public
preconditions

 (you should use exceptions for this)

private void method(SomeObject so) {
 assert (so!=null);
 //...
}

public float method(float x) {
 assert (x>=0);
 //...
}

If a use of your method provides bad (nonsensical)
inputs, you should offer them the chance to remedy the
mistake by throwing an exception. Assertions would
just kill the program (if enabled for release , which they
shouldn’t be), or not catch the error because they are
disabled!

48

Sqrt Example

public float method(float x) throws InvalidInputException {
 .// Input sanitisation (precondition)
 if (x<0.f) throw new InvalidInputException();

 float result=0.f;
 // compute sqrt and store in result

 // Postcondition
 assert (result>=0);

 return result;
}

The distinction is subtle but important. The ‘assert‘
is only used to test the correctness of the algorithm
output when given a valid (positive) input. If the as-
sertion fires, it’s programmer error and not user error.

Assertions can be Slow if you Like

 Here, isSorted() is presumably quite costly (at least O(n)).

 That's OK for debugging (it's checking the sort algorithm is
working, so you can accept the slowdown)

 And will be turned off for production so that's OK

 (but your assertion shouldn't have side effects)

public int[] sort(int[] arr) {
 Int[] result = ...
 // blah
 assert(isSorted(result));
}

NOT for Checking your Compiler/Computer

 If this isn't working, there is something much bigger wrong
with your system!

 It's pointless putting in things like this

public void method() {
 Int a=10;
 assert (a==10);
 //...
}

For the Last Word on Assertions...

http://www.oracle.com/technetwork/articles/javase/javapch06.pdf

49

Lecture 9

Copying Objects

Cloning I

 Sometimes we really do want to copy an object

 Java calls this cloning
 We need special support for it

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r_copy

Cloning II

 Every class in Java ultimately inherits from the
Object class
 This class contains a clone() method so we just

call this to clone an object, right?
 This can go horribly wrong if our object contains

reference types (objects, arrays, etc)

Java is unusual in that it really, really wants you to
use OOP. In your practicals you will have noticed that,
even to do simple procedural stuff, you had to encase
everything in a class—even the main() method. A fur-
ther decision they made is that ultimately all classes
will inherit from a special Object class. i.e. the top
of all inheritance trees is Object even though we never
explicitly say so in code...

Shallow and Deep Copies

public class MyClass {
 private MyOtherClass moc;
}

MyClass
object Shallo

w

MyOtherClass
object MyClass

object

MyOtherClass
object

MyClass
object

MyOtherClass
object

MyClass
object

MyClass
object

MyOtherClass
object

Deep

Java Cloning

 So do you want shallow or deep?
 The default implementation of clone() performs a shallow

copy

 But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

 Java has a Cloneable interface

 If you call clone on anything that doesn't extend this
interface, it fails

50

Clone Example I

 public class Velocity {
 public float vx;
 public float vy;
 public Velocity(float x, float y) {
 vx=x;
 vy=y;
 }
 };

 public class Vehicle {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }
 };

Clone Example II

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 public Object clone() {
 return super.clone();
 }

 };

Here we fill in the clone() method using super.clone().
You can think of this as doing a byte-for-byte copy of
an object in memory. Any primitive types (such as
age) will therefore be copied. And references will also
be copied, but not the objects they point to. Hence
this much gets us a shallow copy.

Clone Example III
 public class Velocity implement Cloneable {

 public Object clone() {
 return super.clone();
 }
 };

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity v;
 public Student(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 public Object clone() {
 Vehicle cloned = (Vehicle) super.clone();
 cloned.vel = (Velocity)vel.clone();
 return cloned;
 }
 };

A deep clone requires that we clone the objects that

are referenced (and they, in turn clone any objects
they reference, and so on). Here we make Velocity
cloneable and make sure to clone the member variable
that Vehicle has.

Cloning Arrays

 Arrays have build in cloning but the
contents are only cloned shallowly

int intarray[] = new int[100];
Vector3D vecarray = new Vector3D[10];

...

int intarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone();

Covariant Return Types

 The need to cast the clone return is annoying

 Recent versions of Java allow you to override a
method in a subclass and change its return type to
a subclass of the original's class

public Object clone() {
 Vehicle cloned = (Vehicle) super.clone();
 cloned.vel = (Velocity)vel.clone();
 return cloned;
 }

class A {}

class B extends A {}

class C {
 A mymethod() {}
}

class D extends C {
 B mymethod() {}
}

This is a similar concept to the covariant parameter
tyoes we met breifly in lecture 7. We saw Java does
not support that, but it does support this. So if we
have:

public class A {

Object void work(Object o) {...}

}

then the following is not allowed (covariant parameter
types):

public class B extends A {

@Override

public Object work(Person p) {...}

}

but this is (covariant return types):

51

public class C extends A {

@Override

public Person work(Object o) {...}

}

Marker Interfaces

 If you look at what's in the Cloneable interface, you'll find it's
empty!! What's going on?

 Well, the clone() method is already inherited from Object so it
doesn't need to specify it

 This is an example of a Marker Interface
 A marker interface is an empty interface that is used to

label classes
 This approach is found occasionally in the Java libraries

You might also see these marker interfaces referred to
as tag interfaces. They are simply a way to label or tag
a class. They can be very useful, but equally they can
be a pain (you can’t dynamically tag a class, nor can
you prevent a tag being inherited by all subclasses).

The clone() approach is unique to Java. It can be
a bit of a headache, but it was meant to address
the shortcomings of the de-facto copying approach in
OOP, which is the use of copy constructors:

Copy Constructors I

 Another way to create copies of objects is to define
a copy constructor that takes in an object of the
same type and manually copies the data

 public class Vehicle {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }
 public Vehicle(Vehicle v) {

age=v.age;
vel = v.vel.clone();

 }
}

Copy Constructors II

 Now we can create copies by:

 This is quite a neat approach, but has some
drawbacks which are explored on the Examples
Sheet

Vehicle v = new Vehicle(5, 0.f, 5.f);

Vehicle vcopy = new Vehicle(v);

I won’t go into detail on these here. Instead they are
on the examples sheet.

52

Lecture 10

Language Evolution

Evolve or Die

 Many languages start out as a programmer
“scratching an itch”: they create something that is
particularly suitable for some niche

 If the language is to 'make it' then it has to evolve to
incorporate both new paradigms and also the old
paradigms that were originally rejected but turn out
to have value after all

 The challenge is backwards compatability: you don't
want to break old code or require programmers to
relearn your language (they'll probably just jump
ship!)

 Let's look at some examples for Java...

Ostensibly this course is about OOP, but in reality few
languages can claim to be a pure implementation of
any particular paradigm. Even ML offers you impera-
tive programming. Actual languages are a mish-mash
of concepts, some of which are inevitably retrofitted.
This retrofitting tends to produce ugly syntax and un-
expected quirks, so it’s good to explore some examples
(in Java of course).

Vector

 The original Java included the Vector class,
which was an expandable array

 They chose to make it synchronised, which
just means it is safe to use with multi-threaded
programs

 When they introduced Collections, they
decided everything should not be synchronised

 Created ArrayList, which is just an
unsynchronised (=better performing) Vector

 But had to retain Vector for backwards
compatibility!

Vector v = new Vector()
v.add(x);

Vector has no place in modern Java really, and if you
are using it you should stop doing so, in favour of using
ArrayList. If you need it to be synchronised, this can

be done (see next year for those sticking around in the
CST). The only reason Vector remains is backwards
compatibility. It’s handy to know about it though,
since it features in a lot of legacy code.

10.1 Generics

The Origins of Generics

 The original Collections
framework just dealt with
collections of Objects
 Everything in Java “is-a”

Object so that way our
collections framework will
apply to any class

 But this leads to:
 Constant casting of the

result (ugly)
 The need to know what

the return type is
 Accidental mixing of types

in the collection

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

The Origins of Generics II

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile:
the error will be at
runtime)

This is pretty nasty. The OOP paradigm has let us
write a flexible data structure that can handle us wrap-

53

ping around various types, but it can’t apply the re-
striction that all the types in one object should be
the same. Additionally, all this casting makes for ugly
code. This is what convinced the Java designers that
parameterised types (Generics) were needed. But it
was already a bit late: there was tons of established
code using Collections (and still is). The Java designers
were faced with the problem of updating the language
to support parameterised types without breaking ev-
erything that went before.

The Generics Solution

 Java implements type erasure
 Compiler checks through your code to make sure

you only used a single type with a given Generics
object

 Then it deletes all knowledge of the parameter,
converting it to the old style invisibly

LinkedList<Integer> ll =
 new LinkedList<Integer>();

…

for (Integer i : ll) {
 do_sthing(i);
}

LinkedList ll =
 new LinkedList();

…

for (Object i : ll) {
 do_sthing((Integer)i);
}

So now we see why we can’t use primitives as pa-
rameters: whatever we put there must be castable to
Object, which primitives simply aren’t.

The C++ Templates Solution

 Compiler first generates the class definitions from
the template

class MyClass<T> {
 T membervar;
};

class MyClass_float {
 float membervar;
};

class MyClass_int {
 int membervar;
};
class MyClass_double {
 double membervar;
};
...

class MyClass_float {
 float membervar;
};

C++ doesn’t suffer from the same problem since it just
generates a special class for each instance you request.

Generics and SubTyping

// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;

<<interface>>
Collection

Person

<<interface>>
Collection

So a list of Persons is a list of Animals, yes?

Animal

10.2 Java 8

Adding Functional Elements...

 Java is undeniably imperative, but
there is something seductive about
some of the highly succinct and
efficient syntax

 Enter Java 8...

result=map (fn x => (x+1)*(x+1)) numlist;

int[] result = new int[numlist.length];
for (int i=0; i<numlist.length; i++) {
 result[i] = (numlist[i]+1)*(numlist[i]+1)
}

Java 8 is a major Java release. A lot has been added,
some of it controversial. Not much of it relates to
OOP but we discuss it partly for interest and partly
because it emphasises how (big) languages tend to just
subsume multiple paradigms, blurring the boundaries
more and more

54

Lambda Functions

 Supports anonymous functions

()->System.out.println("It's nearly over...");

s->s+”hello”;

s->{s=s+”hi”;
 System.out.println(s);}

(x,y)->x+y;

Functions as Values

// No arguments
Runnable r = ()->System.out.println("It's nearly over...");
r.run();

// No arguments, non-void return
Callable<Double> pi = ()->3.141;
pi.call();

// One argument, non-void return
Function<String,Integer> f = s->s.length();
f.apply(“Seriously, you can go soon”)

Method References

System.out::println

Person::doSomething

Person::new

 Can use established functions too

New forEach for Lists

List<String> list = new LinkedList<>();
list.add("Just a");
list.add("few more slides");

list.forEach(System.out::println);

list.forEach(s->System.out::println(s));

list.forEach(s->{s=s.toupperCase();
 System.out::println(s);};

Note this is effectively our beloved ‘map‘ function from
ML!

Sorting

List<String> list = new LinkedList<>();

….

Collections.sort(list, (s1, s2) -> s1.length() - s2.length());

 Who needs Comparators?

Streams

 Collections can be made into streams
(sequences)

 These can be filtered or mapped!

List<Integer> list = ...

list.stream().map(x->x+10).collect(Collectors.toList());

list.stream().filter(x->x>5).collect(Collectors.toList());

This is a more explicit introduction of the ‘filter‘ and
‘map‘ features seen in functional programming (you
didn’t actually meet ‘filter‘ formally in FoCS, but it
just filters a list according to some supplied predicate).
However, notice how ugly the syntax has become...

55

Lecture 11

Design Patterns

Design Patterns

 A Design Pattern is a general reusable solution to
a commonly occurring problem in software design

 Coined by Erich Gamma in his 1991 Ph.D. thesis

 Originally 23 patterns, now many more. Useful to
look at because they illustrate some of the power
of OOP (and also some of the pitfalls)

 We will only consider a subset

Coding anything more complicated than a toy pro-
gram usually benefits from forethought. After you’ve
coded a few medium-sized pieces of object-oriented
software, you’ll start to notice the same general prob-
lems coming up over and over. And you’ll start to au-
tomatically use the same solutions to them. We need
to make sure that set of default solutions is a good
one!

In his 1991 PhD thesis, Erich Gamma compared this to
the field of architecture, where recurrent problems are
tackled by using known good solutions. The follow-on
book (Design Patterns: Elements of Reusable
Object-Oriented Software, 1994) identified a se-
ries of commonly encountered problems in object-
oriented software design and 23 solutions that were
deemed elegant or good in some way. Each solution is
known as a Design Pattern:

A Design Pattern is a general reusable solution
to a commonly occurring problem in software
design.

The modern list of design patterns is ever-expanding
and there is no shortage of literature on them. In this
course we will look at a few key patterns and how they
are used.

11.0.1 So Design Patterns are like cod-
ing recipes?

No. Creating software by stitching together a series
of Design Patterns is like painting by numbers — it’s
easy and it probably works, but it doesn’t produce a
Picasso! Design Patterns are about intelligent solu-
tions to a series of generalised problems that you may
be able to identify in your software. You might find
they don’t apply to your problem, or that they need
adaptation. You simply can’t afford to disengage your
brain (sorry!).

11.0.2 Why Bother Studying Them?

Design patterns are useful for a number of things, not
least:

1. They encourage us to identify the fundamental
aims of given pieces of code

2. They save us time and give us confidence that our
solution is sensible

3. They demonstrate the power of object-oriented
programming

4. They demonstrate that näıve solutions are bad

5. They give us a common vocabulary to describe
our code

The last one is important: when you work in a team,
you quickly realise the value of being able to succinctly
describe what your code is trying to do. If you can re-
place twenty lines of comments1 with a single word, the
code becomes more readable and maintainable. Fur-
thermore, you can insert the word into the class name
itself, making the class self-describing.

1You are commenting your code liberally, aren’t you?

56

11.0.3 The Open-Closed Principle

The Open-Closed Principle

Classes should be open for extension
but closed for modification

 i.e. we would like to be able to modify the
behaviour without touching its source code

 This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

To help understand why this is helpful, it’s useful to
think about multiple developers using a software li-
brary. If they want to alter one of the classes in the
library, they could edit its source code. But this would
mean they had a customised version of the library
that they wouldn’t be able to update when new (bug-
reduced) versions appeared. A better solution is to
use the library class as a base class and implement the
minor changes that are desired in the custom child.
So, if you’re writing code that others will use (and you
should always assume you are in OOP) you should
make it easy for them to extend your classes and dis-
courage direct editing of them.

57

11.0.4 The Decorator Pattern

Decorator

Abstract problem: How can we add
state or methods at runtime?

Example problem: How can we
efficiently support gift-wrapped
books in an online bookstore?

Solution 1: Add variables to the established Book
class that describe whether or not the product is to be
gift wrapped.

Solution 2: Extend Book to create WrappedBook.

Solution 3: (Decorator) Extend Book to create
WrappedBook and also add a member reference to a
Book object. Just pass through any method calls to
the internal reference, intercepting any that are to do
with shipping or price to account for the extra wrap-
ping behaviour.

Decorator in General

 The decorator pattern
adds state and/or
functionality to an
object dynamically

So we take an object and effectively give it extra state
or functionality. I say ‘effectively’ because the actual
object in memory is untouched. Rather, we create a
new, small object that ‘wraps around’ the original. To
remove the wrapper we simply discard the wrapping
object. Real world example: humans can be ‘deco-
rated’ with contact lenses to improve their vision.

Note that we can use the pattern to add state
(variables) or functionality (methods), or both if we

want. In the diagram above, I have explicitly al-
lowed for both options by deriving StateDecorator and
FunctionDecorator. This is usually unnecessary — in
our book seller example we only want to decorate
one thing so we might as well just put the code into
Decorator.

58

11.0.5 The Singleton Pattern

Singleton

Abstract problem: How can we ensure
only one instance of an object is
created by developers using our code?

Example problem: You have a class
that encapsulates accessing a
database over a network. When
instantiated, the object will create a
connection and send the query.
Unfortunately you are only allowed
one connection at a time.

A valid solution to this is to make sure you close the
database connection after using it, so you can just
create Database objects every time you have a query.
However, what if you forgot to close it? And what if
making the connection was slow (they always are in
computer time...).

Instead we exploit our access modifiers and create a
private constructor (to ensure no-one can create ob-
jects at will) and add in a static member (the only in-
stance we will ever have). Finally, we include a static
getter for this member.

Ideally the instantiation of the Database should be
lazy—i.e. only done on the first call to the getter.

Singleton in General

 The singleton pattern
ensures a class has only
one instance and provides
global access to it

There is a caveat with Java. If you choose to make
the constructor protected (this would be useful if you
wanted a singleton base class for multiple applications
of the singleton pattern, and is actually the ‘official’
solution) you have to be careful.

Protected members are accessible to the class, any sub-
classes, and all classes in the same package. Therefore,
any class in the same package as your base class will
be able to instantiate Singleton objects at will, using
the new keyword!

Additionally, we don’t want a crafty user to subclass
our singleton and implement Cloneable on their ver-
sion. How could you ensure this doesn’t happen?

59

11.0.6 The State Pattern

State

Abstract problem: How can we let an
object alter its behaviour when its
internal state changes?

Example problem: Representing
academics as they progress through
the rank

Solution 1: Have an abstract Academic class which
acts as a base class for Lecturer, Professor, etc.

Solution 2: Make Academic a concrete class with
a member variable that indicates rank. To get rank-
specific behaviour, check this variable within the rele-
vant methods.

Solution 3: (State) Make Academic a concrete
class that has-a AcademicRank as a member. Use
AcademicRank as a base for Lecturer, Professor, etc.,
implementing the rank-specific behaviour in each..

State in General

 The state pattern allows
an object to cleanly alter
its behaviour when
internal state changes

60

11.0.7 The Strategy Pattern

Strategy

Abstract problem: How can we select an
algorithm implementation at runtime?

Example problem: We have many
possible change-making
implementations. How do we cleanly
change between them?

Solution 1: Use a lot of if...else statements in the
getChange(...) method.

Solution 2: (Strategy) Create an abstract
ChangeFinder class. Derive a new class for each of our
algorithms.

Strategy in General

 The strategy pattern allows us to cleanly
interchange between algorithm implementations

Note that this is essentially the same UML as the State
pattern! The intent of each of the two patterns is quite
different however:

• State is about encapsulating behaviour that is
linked to specific internal state within a class.

• Different states produce different outputs (exter-
nally the class behaves differently).

• State assumes that the state will continually
change at run-time.

• The usage of the State pattern is normally in-
visible to external classes. i.e. there is no set-
State(State s) function.

• Strategy is about encapsulating behaviour in a
class. This behaviour does not depend on internal
variables.

• Different concrete Strategys may produce exactly
the same output, but do so in a different way.
For example, we might have a new algorithm to
compute the standard deviation of some variables.
Both the old algorithm and the new one will pro-
duce the same output (hopefully), but one may be
faster than the other. The Strategy pattern lets
us compare them cleanly.

• Strategy in the strict definition usually assumes
the class is selected at compile time and not
changed during runtime.

• The usage of the Strategy pattern is normally vis-
ible to external classes. i.e. there will be a set-
Strategy(Strategy s) function or it will be set in
the constructor.

However, the similarities do cause much debate and
you will find people who do not differentiate between
the two patterns as strongly as I tend to.

61

11.0.8 The Composite Pattern

Composite

Abstract problem: How can we treat
a group of objects as a single object?

Example problem: Representing a
DVD box-set as well as the individual
films without duplicating info and
with a 10% discount

The solution is fairly straightforward. We want to be
able to treat a group of DVDs to just like a single DVD,
so BoxSet inherits from DVD. To avoid repeating the
description information and to keep pricing in sync,
BoxSet must also have access to the constituent DVD
objects.

Composite in General

 The composite pattern
lets us treat objects and
groups of objects
uniformly

If you’re still awake, you may be thinking this looks
like the Decorator pattern, except that the new class
supports associations with multiple DVDs (note the *
by the arrowhead). Plus the intent is different—we
are not adding new functionality to objects but rather
supporting the same functionality for groups of those
objects.

If you try to make a graphical representation of com-
posites, you’ll end up with some form of tree with each
composite a node and each single entity a leaf. Many
texts use this terminology when discussing the com-
posite pattern.

62

11.0.9 The Observer Pattern

Observer

Abstract problem: When an object
changes state, how can any
interested parties know?

Example problem: How can we write
phone apps that react to accelerator
events?

This pattern is used regularly, but is particularly useful
for event-based programs. The process is analogous to
a magazine subscription: you subscribe with the pub-
lisher in order to receive publish events (magazines)
as soon as they are available. In design patterns par-
lance, you are an observer of the publisher, who is the
subject. It should be clear that this is also a very im-
portant pattern for the various proxy implementations
if the source information might change during use.

In an Android smartphone, the system provides a sub-
ject in the form of a SensorManager object, which is
actually a singleton (only one manager at any time).
So we get it by calling:

SensorManager sManager = (SensorManager)

getSystemService(SENSOR_SERVICE);

We then register with it with a line like:

sManager.registerListener(this,

sManager.getDefaultSensor(

Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_NORMAL);

Our class must implement SensorEventListener, which
forces us to specify a onSensorEvent() method. When-
ever the system gets a new accelerometer reading, it
cycles over all the objects that have registered with it,
feeding them the new reading.

Observer in General

 The observer pattern allows an object to have multiple
dependents and propagates updates to the
dependents automatically.

11.0.10 Classifying Patterns

Often patterns are classified according to what their
intent is or what they achieve. The original book de-
fined three classes:

Creational Patterns . Patterns concerned with
the creation of objects (e.g. Singleton,
Abstract Factory).

Structural Patterns . Patterns concerned with the
composition of classes or objects (e.g. Composite,
Decorator, Proxy).

Behavioural Patterns . Patterns concerned with
how classes or objects interact and distribute re-
sponsibility (e.g. Observer, State, Strategy).

11.0.11 Other Patterns

You’ve now met a few Design Patterns. There are
plenty more (23 in the original book and many, many
more identified since), but this course will not cover
them. What has been presented here should be suffi-
cient to:

• Demonstrate that object-oriented programming is
powerful.

• Provide you with (the beginnings of) a vocabulary
to describe your solutions.

• Make you look critically at your code and your
software architectures.

• Entice you to read further to improve your pro-
gramming.

Of course, you probably won’t get it right first time (if
there even is a ‘right’). You’ll probably end up refac-
toring your code as new situations arise. However, if

63

a Design Pattern is appropriate, you should probably
use it.

11.0.12 Performance

Note that all of the examples here have concentrated
on structuring code to be more readable and maintain-
able, and to incorporate constraints structurally where
possible. At no point have we discussed whether the
solutions perform better. Many of the solutions exploit
runtime polymorphic behaviour, for example, and that
carries with it certain overheads.

This is another reason why you can’t apply Design Pat-
terns blindly. [This is a good thing since, if it wasn’t
true, programming wouldn’t be interesting, and you
wouldn’t get jobs!].

64

Appendix I: Java, the JVM and Bytecode

Java is known for its cross-platform abilities, which has
given it strong internet credentials. Being able to send
a file compiled on one machine to another machine
with a different architecture and have it run is a neat
trick. It shouldn’t work because the machine code for
one machine shouldn’t make sense to another.

Interpreter to Virtual Machine

 Java was born in an era of internet connectivity. SUN
wanted to distribute programs to internet machines
 But many architectures were attached to the internet

– how do you write one program for them all?
 And how do you keep the size of the program small

(for quick download)?

 Could use an interpreter (Javascript). But:→
 High level languages not very space­efficient
 The source code would implicitly be there for anyone

to see, which hinders commercial viability.

 Went for a clever hybrid interpreter/compiler

Java Bytecode I

 SUN envisaged a hypothetical Java Virtual Machine
(JVM). Java is compiled into machine code (called
bytecode) for that (imaginary) machine. The bytecode
is then distributed.

 To use the bytecode, the user must have a JVM that has
been specially compiled for their architecture.

 The JVM takes in bytecode and spits out the correct
machine code for the local computer. i.e. is a bytecode
interpreter

So the trick is to partially compile the Java code to a
machine code for a universal machine (that doesn’t ac-
tually exist). To actually use this special machine code
(“bytecode”) a machine must translate from bytecode
to its own local machine code. To that it must have a
Java Virtual Machine (JVM) installed that knows the
translation.

Java Bytecode II

Source Code Java Compiler Bytecode

Developer

Distribute

Unix User

JVM for
x86/Linux

Machine
code

Win User

JVM for
x86/win

Machine
code

Android User

JVM for
ARM

Machine
code ...

Java Bytecode III

+ Bytecode is compiled so not easy to reverse
engineer

+ The JVM ships with tons of libraries which makes
the bytecode you distribute small

+ The toughest part of the compile (from human­
readable to computer readable) is done by the
compiler, leaving the computer­readable
bytecode to be translated by the JVM (easier job →

 faster job)→
­ Still a performance hit compared to fully compiled
(“native”) code

65

