Lecture 7: Lexical semantics

Outline of today's lecture

Lecture 7: Lexical semantics

Lexical semantics: semantic relations

Polysemy

Word sense disambiguation

Grounding

・ロト・日本・日本・日本・日本・日本

Lecture 7: Lexical semantics

Lexical semantics

- Limited domain: mapping to some knowledge base term(s). Knowledge base constrains possible meanings.
- Issues for broad coverage systems:
 - Boundary between lexical meaning and world knowledge.

(日) (日) (日) (日) (日) (日) (日)

- Representing lexical meaning.
- Acquiring representations.
- Polysemy and multiword expressions.

Lecture 7: Lexical semantics

Approaches to lexical meaning

- Formal semantics: extension what words denote (e.g., cat': the set of all cats). But ...
- Semantic primitives: e.g., kill means CAUSE (NOT (ALIVE)). But ...
- Meaning postulates:

 $\forall e, x, y[\mathsf{kill}'(e, x, y) \to \exists e'[\mathsf{cause}'(e, x, e') \land \mathsf{die}'(e', y)]]$

- Ontological relationships: informal or formal (description logics): this lecture (informal approaches).
- Distributional approaches (lecture 8 and 9).

Lecture 7: Lexical semantics

Approaches to lexical meaning

- Formal semantics: extension what words denote (e.g., cat': the set of all cats). But ...
- Semantic primitives: e.g., kill means CAUSE (NOT (ALIVE)). But ...
- Meaning postulates:

 $\forall e, x, y[\mathsf{kill}'(e, x, y) \to \exists e'[\mathsf{cause}'(e, x, e') \land \mathsf{die}'(e', y)]]$

- Ontological relationships: informal or formal (description logics): this lecture (informal approaches).
- Distributional approaches (lecture 8 and 9).

Lecture 7: Lexical semantics

Approaches to lexical meaning

- Formal semantics: extension what words denote (e.g., cat': the set of all cats). But ...
- Semantic primitives: e.g., kill means CAUSE (NOT (ALIVE)). But
- Meaning postulates:

 $\forall e, x, y[\mathsf{kill}'(e, x, y) \to \exists e'[\mathsf{cause}'(e, x, e') \land \mathsf{die}'(e', y)]]$

- Ontological relationships: informal or formal (description logics): this lecture (informal approaches).
- Distributional approaches (lecture 8 and 9).

Lecture 7: Lexical semantics

Approaches to lexical meaning

- Formal semantics: extension what words denote (e.g., cat': the set of all cats). But ...
- Semantic primitives: e.g., kill means CAUSE (NOT (ALIVE)). But ...
- Meaning postulates:

$\forall e, x, y[\mathsf{kill}'(e, x, y) \to \exists e'[\mathsf{cause}'(e, x, e') \land \mathsf{die}'(e', y)]]$

- Ontological relationships: informal or formal (description logics): this lecture (informal approaches).
- Distributional approaches (lecture 8 and 9).

Lecture 7: Lexical semantics

Approaches to lexical meaning

- Formal semantics: extension what words denote (e.g., cat': the set of all cats). But ...
- Semantic primitives: e.g., kill means CAUSE (NOT (ALIVE)). But ...
- Meaning postulates:

 $\forall e, x, y[\mathsf{kill}'(e, x, y) \rightarrow \exists e'[\mathsf{cause}'(e, x, e') \land \mathsf{die}'(e', y)]]$

- Ontological relationships: informal or formal (description logics): this lecture (informal approaches).
- Distributional approaches (lecture 8 and 9).

Lecture 7: Lexical semantics

Approaches to lexical meaning

- Formal semantics: extension what words denote (e.g., cat': the set of all cats). But ...
- Semantic primitives: e.g., kill means CAUSE (NOT (ALIVE)). But ...
- Meaning postulates:

 $\forall e, x, y[\mathsf{kill}'(e, x, y) \rightarrow \exists e'[\mathsf{cause}'(e, x, e') \land \mathsf{die}'(e', y)]]$

- Ontological relationships: informal or formal (description logics): this lecture (informal approaches).
- Distributional approaches (lecture 8 and 9).

Lecture 7: Lexical semantics

Approaches to lexical meaning

- Formal semantics: extension what words denote (e.g., cat': the set of all cats). But ...
- Semantic primitives: e.g., kill means CAUSE (NOT (ALIVE)). But ...
- Meaning postulates:

 $\forall e, x, y[\mathsf{kill}'(e, x, y) \rightarrow \exists e'[\mathsf{cause}'(e, x, e') \land \mathsf{die}'(e', y)]]$

- Ontological relationships: informal or formal (description logics): this lecture (informal approaches).
- Distributional approaches (lecture 8 and 9).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Lecture 7: Lexical semantics

Examples to think about

- tomato
- table
- thought
- democracy
- push
- sticky

Lexical semantics: semantic relations

Hyponymy: IS-A

(a sense of) dog is a hyponym of (a sense of) animal

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- animal is a hypernym of dog
- hyponymy relationships form a taxonomy
- works best for concrete nouns

Lexical semantics: semantic relations

Some issues concerning hyponymy

- not useful for all words: thought, democracy, push, sticky?
- individuation differences: is table a hyponym of furniture?
- multiple inheritance: e.g., is coin a hyponym of both metal and money?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

what does the top of the hierarchy look like?

Lexical semantics: semantic relations

Other semantic relations

Classical relations:

Meronomy: PART-OF e.g., *arm* is a meronym of *body*, *steering wheel* is a meronym of *car* (piece vs part)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Synonymy e.g., aubergine/eggplant.

Antonymy e.g., big/little

Also:

Near-synonymy/similarity e.g., exciting/thrilling e.g., slim/slender/thin/skinny

Lexical semantics: semantic relations

WordNet

- large scale, open source resource for English
- hand-constructed
- wordnets being built for other languages
- organized into synsets: synonym sets (near-synonyms)

Overview of adj red:

1. (43) red, reddish, ruddy, blood-red, carmine, cerise, cherry, cherry-red, crimson, ruby, ruby-red, scarlet - (having any of numerous bright or strong colors reminiscent of the color of blood or cherries or tomatoes or rubies) 2. (8) red, reddish - ((used of hair or fur) of a reddish brown color; "red deer"; reddish hair")

Lexical semantics: semantic relations

Hyponymy in WordNet

```
Sense 6
big cat, cat
       => leopard, Panthera pardus
            => leopardess
            => panther
       => snow leopard, ounce, Panthera uncia
       => jaguar, panther, Panthera onca,
                                       Felis onca
       => lion, king of beasts, Panthera leo
            => lioness
            => lionet
       => tiger, Panthera tigris
            => Bengal tiger
            => tigress
                                   < □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>
```

Lexical semantics: semantic relations

Using hyponymy

Semantic classification: e.g., for named entity recognition. e.g., JJ Thomson Avenue is a place.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- RTE style inference: find/discover
- Word sense disambiguation
- Query expansion in search

Lexical semantics: semantic relations

Collocation

- two or more words that occur together more often than expected by chance (informal description — there are others)
- some collocations are multiword expressions (MWE): striped bass

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

non-MWEs: heavy snow

Polysemy

- homonymy: unrelated word senses. bank (raised land) vs bank (financial institution)
- bank (financial institution) vs bank (in a casino): related but distinct senses.
- bank (N) (raised land) vs bank (V) (to create some raised land): regular polysemy. Compare pile, heap etc

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

vagueness: bank (river vs snow vs cloud)?

No clearcut distinctions. Dictionaries are not consistent.

Word sense disambiguation

Word sense disambiguation

Needed for many applications, problematic for large domains. Assumes that we have a standard set of word senses (e.g., WordNet)

- frequency: e.g., diet: the food sense (or senses) is much more frequent than the parliament sense (Diet of Wurms)
- collocations: e.g. striped bass (the fish) vs bass guitar: syntactically related or in a window of words (latter sometimes called 'cooccurrence'). Generally 'one sense per collocation'.
- selectional restrictions/preferences (e.g., *Kim eats bass*, must refer to fish

-Word sense disambiguation

WSD techniques

- supervised learning: cf. POS tagging from lecture 3. But sense-tagged corpora are difficult to construct, algorithms need far more data than POS tagging
- unsupervised learning (see below)
- Machine readable dictionaries (MRDs): e.g., look at overlap with words in definitions and example sentences
- selectional preferences: don't work very well by themselves, useful in combination with other techniques

Word sense disambiguation

Standalone WSD

Once a very common research topic, now less studied:

- Evaluation issues
- Lack of a good standard
- Not application-independent:
 - Speech synthesis: e.g., bass Homonyms are not always homophones, but mostly are.
 - SMT and similar applications: WSD part of the model. Translation differences don't necessarily correspond to source language ambiguity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Grounding

- meaning isn't (just) about symbols: humans need to recognize and manipulate things in the world.
- 'grounding': relate symbols to the real world (often associated with Harnad, but other authors too).
- is grounding an essential part of meaning?
- preliminary/abstract discussion here more concrete in later lectures.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Turing: 'Computing machinery and Intelligence'

- introduces what is usually called the 'Turing Test' to replace the question 'Can machines think?'
- Turing described 'The Imitation Game': a man (A), a woman (B) and an interrogator (C) who must decide whether X is A and Y is B or vice versa.
- questions put to both A and B: A is trying to persuade C to make a mistake, B is trying to help C.
- If we instead have A is machine, B is human, how often will C get the identification wrong (after 5 minutes)?

Intelligence as ungrounded imitation?

- Turing described an abstract test (avoiding the complications of robotics, vision etc).
- But communication is central.
- Deception is key to the test: computer 'pretends' to be human.
- Sloman (e.g., p606–610 Cooper and van Leeuwen (eds), 2013) argues that Turing did NOT propose this as a test for intelligence.
- Searle 'Chinese Room': discussion of consciousness, criticism of Strong AI.

Lexical meaning: what doesn't work

- meaning of tomato is tomato' or TOMATO
- meaning postulates
- dictionary definition tomato: mildly acid red or yellow pulpy fruit eaten as a vegetable good dictionary definition allows reader with some familiarity with a concept to identify it

(ロ) (同) (三) (三) (三) (○) (○)

Lexical meaning: unanswered questions

- how far does distributional semantics (next lecture) get us?
- grounding often claimed for systems combining vision and language: is this enough?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- are virtual worlds a possible basis for grounding?
- or do we really need robots?