
Natural Language Processing: Part II
Overview of Natural Language Processing (L90): Part III/ACS

2017, 12 Lectures, Michaelmas Term (these notes, lecture 9)
October 30, 2017
Ann Copestake (aac@cl.cam.ac.uk)
http://www.cl.cam.ac.uk/users/aac10/
Copyright c© Aurélie Herbelot and Ann Copestake, 2012–2017. The notes from this lecture are partly based on slides
written by Aurélie Herbelot. Additional material from other authors as specified below.

9 Lecture 9: Distributional semantics and deep learning

The aim of this lecture is to give an overview some aspects of the interaction of deep learning and NLP. It is not
intended as an introduction to neural networks (NN) or deep learning. The main emphasis is on the notion of an
embedding, which is discussed here as a form of distributional semantics, developed to interact well with neural
architectures. In particular, I outline word2vec and doc2vec and introduce the topic of visualization.

9.1 A very brief overview of neural network architectures

In this section, I very briefly describe some neural architectures.

Perceptron This was a very early model (1962). It simply computes the dot product of an input vector ~x and a
weight vector ~w, compared to a threshold θ . Learning (by a form of gradient descent) is very fast. There are no hidden
layers, so this is just a linear classifier. The output is simply the summation: later systems use more complex activation
functions: e.g. a sigmoid (which can output probabilities).

w3

w2

w1

x3

x2

x1

∑ > θ yes/no

Boltzmann Machines NNs with one or more hidden layers (i.e., layers between input and output) are theoretically
capable of approximating any continuous function (mapping reals to reals) to an arbitrary degree of accuracy. However,
there is no guarantee they can be effectively trained.
A Boltzmann machine has a hidden layer and arbitrary interconnections between units. This is not effectively trainable
in general. A Restricted Boltzmann Machine (RBM) has one input layer and one hidden layer and no intra-layer links.
The RBM is trainable: the structure allows for efficient implementation since the weights can be described by a matrix.
One popular deep learning architecture can be described as a combination of RBMs, so the output from one RBM
is the input to the next. In principle, the RBMs can be trained separately and then fine-tuned in combination. The
intuition is that the layers allow for successive approximations to concepts.

1



VISIBLE HIDDEN

w1, ...w6 b (bias) RBM

https://deeplearning4j.org/restrictedboltzmannmachine
Copyright 2016. Skymind. DL4J is distributed under an Apache 2.0 License.

Architectures for sequences Although effective for many tasks, combined RBMs and similar architectures cannot
handle sequence information well when the sequences are of arbitrary length (we can pass them sequences encoded as
vectors, but the input vectors are fixed length). So a different architecture needed for sequences and most language and
speech problems. Recurrent neural network describes a class of architecture that can handle sequences. This includes
the Long short term memory (LSTM) models which are a development of basic RNNs, which have been found to be
more effective for at least some language applications.
The claim is that LSTMs are better at capturing long-term dependencies: i.e., any relationship between elements in
the sequence that are separated by more than a very small number of other elements.

(1) She shook her head.

(2) She decided she did not want any more tea, so shook her head when the waiter reappeared.

The point of this example is that, in the use here, the object of the verb shake is a possessive NP which agrees with the
subject. We cannot say she shook the head with this meaning. Hence her can be predicted by looking at the subject,
which may be textually quite distant. Note that this is not the same as long distance dependency in linguistics. The
example above can be analysed syntactically as coordination of VPs without any form of ‘gap’. Note that, if we were
using a dependency parser, at the point where we might shift shook, the stack could contain ‘she decided so’, hence
the ‘long-term’ nature refers to the surface text, not the syntactically/semantically structured information.
LSTMs are now standard for speech recognition (after decades where no approach could beat HMMs in any practical
situation), but there is currently lots of experimentation for other language applications.

2



However, our focus here is on the embeddings, which can be described in terms of a language model using Recurrent
Neural Networks. This is illustrated below:

RNN language model: Mikolov et al, 2010

The model is trained on a very large corpus to predict the next word. The vector for word at t is concatenated to the
vector which is output from context layer at t − 1. Words could be encoded using a one-hot vector: one dimension
per word (i.e., a simple index). This would be analogous to HMMs, which use the words themselves for prediction.
However better performance can be obtained using input embeddings. These are, in effect, a distributional model with
dimensionality reduction created on-the-fly, via prediction. The embeddings may be externally created (from another
corpus) or learned as part of the task. If an embedding is to be learned as part of prediction, the input is a one-hot
vector, and the embedding is created in the first layer of the network (this is described in J+M third edition chapter
about neural networks, draft online at web.stanford.edu/˜jurafsky/slp3).
Note that the input to a NN is just a vector and we can combine vectors from different sources. In multimodal
architectures, the features from a CNN for visual recognition (for example) can be concatenated with word embeddings
(although better performance may involve something more complex than simple concatenation). Such systems can be
used for task such as captioning, visual question answering (VQA) (to be discussed in lecture 12).

9.2 word2vec

Although embeddings are often described as involving deep learning, this is misleading. Embeddings are created
using a neural model, trained via prediction (as introduced above). The best known example of such an approach
is word2vec (Mikolov et al 2013), which is the topic of this section. The neural models used to create word2vec
embeddings are only two layer — hence not ‘deep’. word2vec is sometimes called a predict model, in contrast to the
earlier distributional models, which are sometimes called count models.
Omer Levy and colleagues investigated word2vec very carefully, and found that many of its hyperparameters could
usefully be applied to count models. Once trained, word2vec is more-or-less equivalent to a count model with dimen-
sionality reduction and the essential reason for its better performance on some tasks was the improved hyperparame-
ters. word2vec gives dense vectors which are very effective for many tasks: its hyperparameters have been tuned to
give good performance of some of the standard similarity datasets. However, Levy et al found some tasks for which
count vectors without dimensionality reduction were more effective. word2vec models which have been previously
trained on very large corpora are available to download and give good performance out-of-the-box. It is very efficient
computationally compared to most count approaches and therefore easy to incorporate in experiments.
There are two main word2vec architectures:

3



• CBOW: given some context words, predict the target

• Skip-gram: given a target word, predict the contexts

I concentrate on skip-gram here, since it is used more frequently.

The Skip-gram model

The dimensionality of the vectors produced is a parameter of the system: usually the size is a few hundred. The
intuition is that the dimensionality reduction captures meaningful generalizations, but the dimensions are not directly
interpretable: it is impossible to look into ‘characteristic contexts’ as we can with the count models. Of course, the
advantage of the smaller vectors is greater efficiency. As outlined below, there are visualization techniques which
allow one to examine the closeness of different words.
word2vec can be tested on similarity datasets (although note that the hyperparameters have been tuned for high per-
formance on the standard similarity datasets). It can also be used for clustering, as can any model giving a notion of
similarity. Mikolov et al introduced a new task with word2vec: a form of analogy. The idea is that one solve puzzles
such as:

man is to woman as king is to ?

where the correct answer is supposed to be queen. The idea is that one can derive the vector between the pair of words
man and woman and combine it with king, and that the nearest word to the region of vector space that results will be
the answer to the analogy. It should be pointed out that the space is very sparse and that there are many word pairs for
which this does not work (also see Levy et al and Levy and Goldberg for discussion of the appropriate computation
for the task).

One interesting aspect of word2vec training is the use of negative sampling instead of softmax (which is computa-
tionally very expensive). word2vec is trained using logistic regression to discriminate between real and fake words.
In outline, whenever considering a word-context pair, also the network is also given some contexts which are not the
actual observed word. The negative contexts are sampled from the vocabulary (in a manner so that the probability of
sampling something more frequent in the corpus is higher). The number of negative samples used affects the results.
Another interesting aspect is the use of subsampling. Instead of considering all words in the sentence, it is transformed
by randomly removing words from it. For example, the previous sentence might become: considering all sentence

4



transform randomly words. The subsampling function makes it more likely to remove a frequent word. word2vec does
not use a stop list. Subsampling affects the window size around the target (so the word2vec window size is not fixed).
This approach can be emulated in count models, of course.
An additional complication is that the weights of elements in context window vary, so that closer words are given
higher weights (assuming they haven’t been removed by subsampling). Again, this is something that can be replicated
in count based systems. Although word2vec is usually used with unparsed data, it can be modified for use with
dependencies, as described by Levy and Goldberg.

9.3 doc2vec

Le and Mikolov (2014) describe doc2vec, which is a modification of word2vec so a vector is learned to represent
a ‘document’ (i.e., any collection of words, including a sentence, paragraph or short document). In an analogous
fashion to the way skip-gram is trained by predicting context word vectors given an input word, distributed bag of
words (dbow) is trained by predicting context words given a document vector. In dbow, the order of the document
words is ignored, but there is also dmpv, which is analogous to cbow and is sensitive to document word order. The
learned document vector is effective for various tasks, including sentiment analysis (note that there is a large space of
hyperparameters to investigate).
Lau and Baldwin (2016) undertook a careful empirical investigation which addressed some of the initial difficulties in
replication of doc2vec results. One important point they emphasize is the status of the word vectors. In principle, one
could start with random word vector initialization. Lau and Baldwin found empirically that it was preferable to do one
initial run of skip-gram first, and that starting with word embeddings pretrained on some large corpus was even better.

9.4 Visualization techniques

Visualization is very important in experimentation with embeddings (and in other NN contexts). You are strongly en-
couraged to develop appropriate visualization techniques as part of any project as a way of investigated performance
in more depth. This section just illustrates two examples. The first demonstrates the use of t-SNE (van der Maarten
https://lvdmaaten.github.io/tsne/), which is a very important approach for visualizing high dimen-
sionality datasets. The example below, from Lau and Baldwin (2016), illustrates that the document vector produced
by doc2vec is closer to what (intuitively) are the most important words in the sentence rather than the closed class and
less significant content words.

Figure from arxiv.org/abs/1607.05368

The second example is a heatmap from Li et al (2015), demonstrating the effect of intensifiers.

5



Figure from arxiv.org/abs/1506.01066

9.5 Further Reading

Omer Levy’s papers are essential reading for anyone seriously interested in word2vec.
There is a Bayesian version of word2vec due to Barkan (2016) https://arxiv.org/ftp/arxiv/papers/
1603/1603.06571.pdf

The Tensorflow tutorial on word2vec gives a more detailed description than I have attempted here, as well as explaining
how to build a word2vec model:
https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html

Many researchers use the gensim implementation https://radimrehurek.com/gensim/.
There has been a problem with different distributed implementations of word2vec giving different results, sometimes
significantly different. If comparing one’s own results against results reported for a word2vec based system, it is
therefore advisable to rerun the word2vec experiments, if at all possible. As with any software, when reporting
word2vec results, the implementation (and the implementation version) should be given.

6


