Mobile and Sensor Systems

Lecture 6: Mobile Sensing Energy and
Systems Considerations

Prof Cecilia Mascolo
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In this Lecture

* We will study approaches to preserve energy
in mobile sensing systems

* We will look at aspects of local versus cloud
computation
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Context based Apps
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Continuous Monitoring is “expensive”

* Apps need continuous sensing to
— Understand and relate the context of the user

— Trigger actions

* Monitor through sensors continuously is
expensive battery wise
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Solutions

* Avoid continuous sensing

— Duty cycling the sensors: cons, are that the view of
the user activity might not be complete

* Share context sensing among multiple apps
— Shared cache of context sensed data

— Cross app context correlations
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Shared Context Sensing

* At |10am App| asks the value of “Driving”

— Determined through features of the
accelerometer sensor

* System caches it
* At 10.05am App3 asks the value of “Driving”

— Cache value is returned avoiding sensor sampling
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Cross App Context Sharing

* Context inference from “other” features is
possible. An app can learn one attribute by
the attributes learned for other apps.

* Appl monitors accelerometer
(waking/driving)
* App2 uses location sensors (at home/at work)

* Context History: Driving=true At home=false
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ACE

* At |10am App| asks the value of “Driving”

— Determined through features of the
accelerometer sensor

* Systems caches it
* At 10.05am App3 asks the value of “Driving”

— Cache value is returned avoiding sensor sampling

* At 10.05 App2 asks the value of “AtHome”

— Negative correlation in context history used to
report value False if Driving is True in the cache
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Best Attribute to Use

* Always use the cheapest attribute

* If Running=True or AtHome=True then
InOffice=False

* Use the cheapest one cached to infer InOffice
value
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ACE

e How can these context correlations be
learned?

* Do they even exist?
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ACE System
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Contexters and Rule Miner

* Contexters: Determining value of context
with sensors by using inference algorithms

* Cache among the sensed values can be used
to share among contexters instead of sensing

* Rule Miner: maintains user’s context history
and automatically learns relationships among
various context attributes
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Inference Cache and Planner

* Inference Cache: |t returns a value not
only if the raw sensor cache has a value but
also if it can be inferred by using context rules
and cached values of other attributes

* Sensing Planner: this finds the sequence of
proxy attributes to speculatively sense to
determine the value of the target attribute in
the cheapest way.
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Energy of context attributes

Table 1: Context attributes implemented in ACE

Attribute [Short |Sensors used (sample length) | Energy (mJ)
IsWalking| W Accelerometer (10 sec) 259
IsDriving| D Accelerometer (10 sec) 259
IsJogging| J Accelerometer (10 sec) 259
IsSitting| S Accelerometer (10 sec) 259
AtHome H WiFi 605
InOffice | O WiFi 605
IsIndoor | I GPS + WiFi 1985
IsAlone A Microphone (10 sec) 2895
InMeeting| M | WIiFi + Microphone (10 sec) 3505
IsWorking| R |WIiFi + Microphone (10 sec) 3505
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Learned Rules by Rule Miner

{IsDriving = True} = {Indoor = False}

{Indoor = T,AtHome = F,IsAlone = T} = {InOffice = T}
{IsWalking = T} = {InMeeting = F}

{IsDriving = F, IsWalking = F} = {Indoor =T}

{AtHome = F, IsDriving = F, IsUsingApp = T} = {InOffice = T}
{IsJogging = T} = {AtHome = T}
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Rule Miner Simplification
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Rule Miner

* If in a context history of 1000 co-occurring
contexts values where 200 contain both A and

B and 80 include C then

— {A,B}-> C with support 8% (80/1000) and
confidence 40% (80/200)

— Support is used to exclude non frequent
associations

— Confidence is used to tune on accuracy needed
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Energy preserving Sensing Plan
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Sensing Planner Cost Finding

* The best solution is found by going through
the costs of the various options
— Constructed from the basic sensing values

— Problem is NP Hard so for large number of
attributes a heuristic is provided
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Caching Performance
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Systems Energy Saving

* Most of current mobile sensing applications
rely on cloud based computation but...

* code offloading can be quite costly...(energy
and latency costs need to be considered)

* Local resources/computations are actually
quite powerful
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Networking Costs
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Figure 1: The Energy Consumption of Wi-Fi Connectivity vs.
3G Connectivity We performed 10 KB and 100 KB uploads from
a smartphone to a remote server. We used Wi-Fi with RTTs of 25
ms and 50 ms (corresponding to the first two sets of bars) and 3G
with an RTT of 220 ms (corresponding to the last bar).
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MAUI

* MAUI is a mobile device framework which
profiles code components in terms of energy
to decide if to run them locally or remotely
(considering latency requirements).

— Costs related to the transfer of code/data
— Programming framework

— Dynamic decisions based on network constraints
— CPU only
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MAUI Offloading
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Figure 9: A comparison of MAUI’s energy consumption. We compare the energy consumption of running three applications standalone
on the smartphone versus using MAUI for remote execution to servers that are successively further away (the RTT is listed for each case).
The graph on the left shows one run of the face recognition application; the graph in the middle shows running the video game for
400 frames; the graph on the right shows running the chess game for 30 moves. MAUI" is a slight modification to MAUI to bypass the
optimizer and to always offload code. Without this modification, MAUI would have not performed code offload in the case of the video
game and chess because offload ends up hurting energy performance.

MAUI would not
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Local Computation

* Not just the CPU...
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Continuous Audio Sensing Applications
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LEO Overview

Sensor apps
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Low overhead

* uses heuristics (fast runtime)
* runs on the LPU (low energy)

10 app ~100 ms <0.5% VS.
workload

scheduling in cloud
(next best alternative)
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Optimized GPU is Efficient

Optimized GPU is >6x faster than cloud
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Optimized GPU is Efficient

Optimized GPU is >21x faster than
sequential CPU
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Optimized GPU is Efficient

Optimized GPU with batching outperforms
cloud energy-wise
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Summary

* We have learned methods to avoid context
sensing through correlation with other
context

* We have studied how local resources and
cloud offloading have an impact on energy
efficiency and could be used to improve it.
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