Mobile and Sensor Systems

Lecture 5: Modeling and Inference Dr. Sourav Bhattacharya

Lecture Overview

- Introduction to mobile and wearable sensing
- Mobile sensing applications
- Understanding the key tasks in mobile sensing
- Challenges in mobile sensing
- Case study: Modeling audio using Deep Neural Networks
- Open research questions

Mobile and Wearable Sensing



The mobile phone and wearable sensing domain is filled with **hacks**, and imaginative techniques that are used to circumvent the limitations of a platform that was **designed for a different purpose.**

Mobile / Wearable Sensing Vs. Sensor Networks

Mobile Sensing

- Well suited for human activities
- General purpose sensors, often not well suited for accurate sensing of the target phenomena
- Multi-tasking OS. Main purpose is to support various applications
- Low cost of deployment and maintenance (millions of users charge their devices)

Sensor Networks

- Well suited for sensing the environment
- Specialized sensors, designed to accurately monitor specific phenomena
- All resources dedicated to sensing
- High cost deployment and maintenance (regular charging thousands of sensor nodes)

Mobile Sensing Applications

Individual sensing:

- fitness applications
- behaviour intervention applications

Group/community sensing:

- groups to sense common activities and help achieving group goals
- examples: assessment of neighbourhood safety, environmental sensing, collective recycling efforts

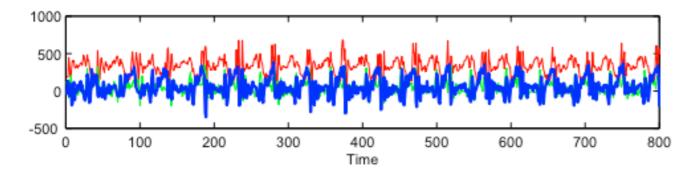
Urban-scale sensing:

- large scale sensing, where large number of people have the same application installed
- examples: tracking speed of disease across a city, congestion and pollution in a city

Human Activity Recognition

Sensor used:

• Accelerometer or Gyroscope

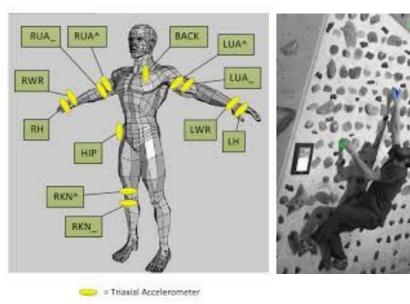


Example inference:

• Walking, running, biking, up/down stairs etc.

Applications:

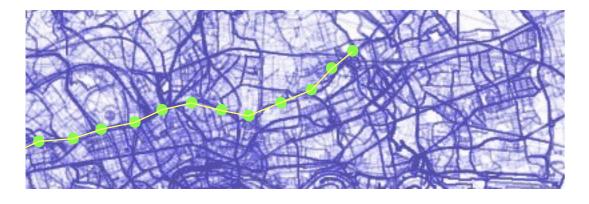
- Health / behaviour intervention
- Fitness monitoring
- Sharing within a community



Transportation-mode Detection

Sensor used:

- Accelerometer or Gyroscope
- GPS, WiFi localization



Example inference:

• Bus, bike, tram, train, car etc.

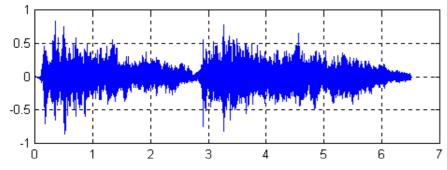
Applications:

- Intelligent transportation
- Smart commuting

Emotion Detection

Sensor used:

- Microphone, bluetooth
- GPS, WiFi localization
- Map speaking features to emotional state



Example inference:

Emotional state, location and co-location with others

Applications:

- Behaviour intervention
- Computational social science
 - Using mobile sensing for quantifying theories in social science

0

Context and Environment

5

Sensor used:

- Microphone
- Camera

Example inference:

-0.5

• Conversation, music, party, activity-related sound etc.

3

Applications:

- Automated diary
- Health and wellness

Challenges in Mobile Sensing

- Complex natural environment
- Heterogeneity of sensors
 - Vary in sampling frequency, sensitivity
- Noisy measurements
- Different sensor position and orientation
- Diverse population
- Privacy
- Limited processing and battery power

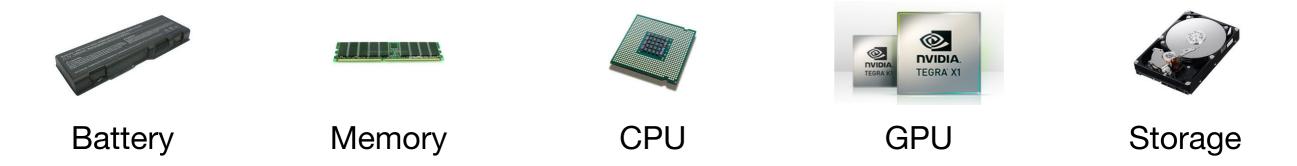
Common sensing platforms

Noisy data

Diverse user population

Challenges in Mobile Sensing

• Sensing is resource intensive



- The purpose of the embedded platform is to support multiple applications
- A sensing application needs to maintain a balance between
 - The amount of resource needed to operate
 - The accuracy of the detection that is achieved

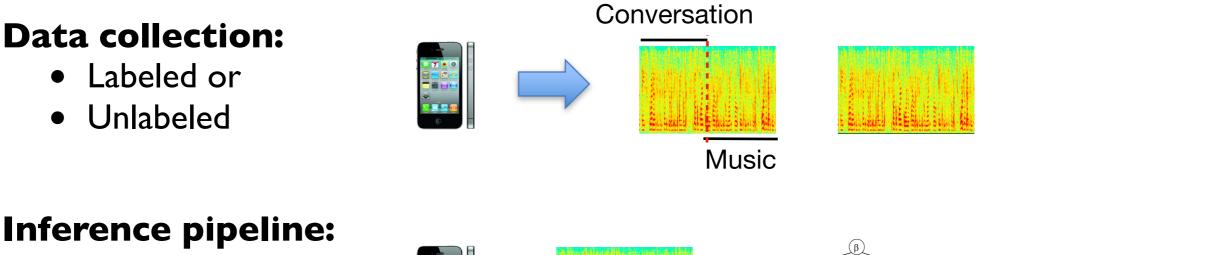
Context Recognition: Machine Learning

		Feature vector	Label
 Supervised Learning: Labeled data (training data) 		$oldsymbol{x}_1$	y_1
 Objective: Learn a function from training of 	data	$oldsymbol{x}_2$	y_2
$\mathcal{F}: \mathbf{X} o \mathbf{Y} \qquad oldsymbol{x_i} \in \mathbb{R}^d$		$ec{m{x}}_n$	$\vdots y_n$
Classification	In mobile s of sensors	sensing we have a	a large number
 Label is discrete / categorical variable 	Sensor 1	$oldsymbol{x_1} \in \mathbb{R}^{d_1}$	
 Regression Label is real-valued / continuous variable 	• • •	fea	Single y_i ature vector y_i $x_1^T, \dots, x_n^T]^T$ Learner
UNIVERSITY OF CAMBRIDGE	Sensor N	$oldsymbol{x_n} \in \mathbb{R}^{d_n}$	Context

Context Recognition: Machine Learning

		Feature vector	Label
 Supervised Learning: Labeled data (training data) 		$oldsymbol{x}_1$	y_1
 Objective: Learn a function from training data 		$oldsymbol{x}_2$	y_2
$\mathcal{F}: \mathbf{X} o \mathbf{Y} \qquad oldsymbol{x_i} \in \mathbb{R}^d$		$ec{m{x}}_n$	$\vdots y_n$
Classification	In mobile s	sensing we have a	large number
 Label is discrete / categorical variable 	Sensor 1	$x_1 \in \mathbb{R}^{d_1} o$ L	\downarrow^{y_i}
 Regression Label is real-valued / continuous variable 			
	• •	• • •	Ensemble
UNIVERSITY OF CAMBRIDGE	Sensor N	$oldsymbol{x_n} \in \mathbb{R}^{d_n} { woheadrightarrow}$ L	y_i Context earner N

Development Design Pattern

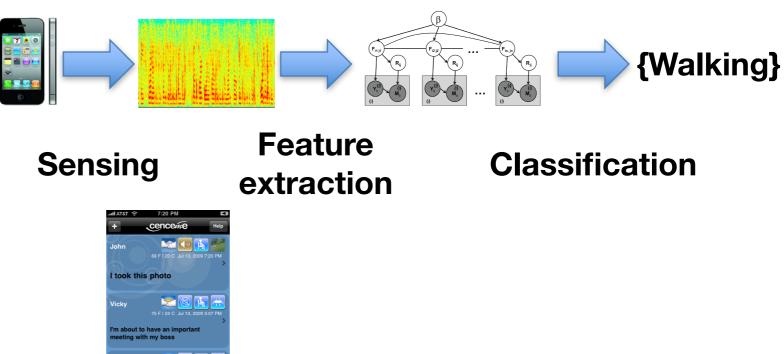


Inference pipeline:

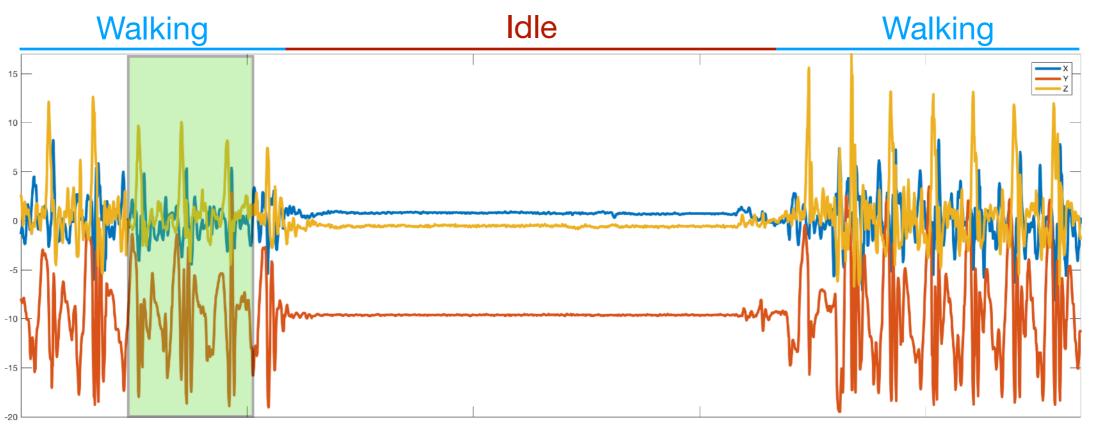
- Sensing
- Feature extraction
- Classification \bullet

Mobile sensing app:

- Storage
- Networking
- Sharing, privacy



Case Study: Physical Activity Recognition



Accelerometer data

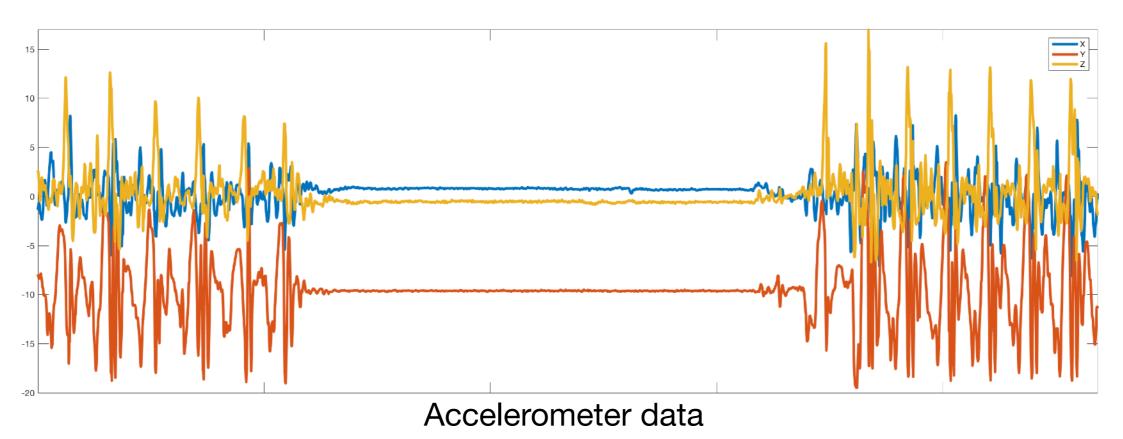
Feature engineering:

- Mean, variance, skewness, mean-crossing rate, peak etc.
- FFT, frequency bands, energy etc.

Supervised learning:

- Decision tree (C4.5)
- SVM
- Random forest

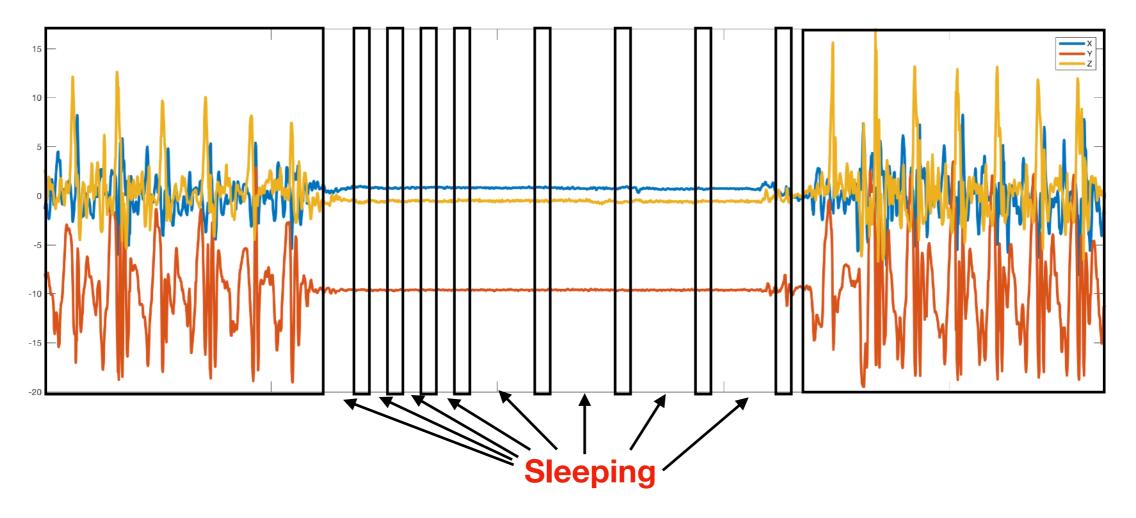
Continuous Sensing



Continuous sensing challenges:

- Highly accurate data
- Very costly in terms of battery and CPU usage:
 - Continuous sensing on multiple sensors, e.g., GPS and Gyroscope, can reduce the battery life to 4-6 hours
- Can be used on cheap sensors, e.g., accelerometer

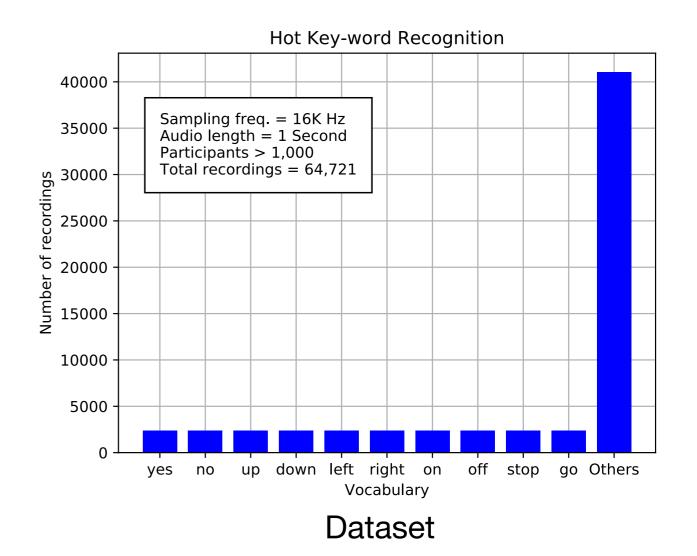
Duty Cycling



- Lower impact on the battery
- Less accurate, interesting events may take place during the sleeping period
- Adjust the duration of the sleeping periods according to the rate of the events detected
 - Sleep longer if no events are detected
 - If new events detected, reduce sleeping time

Case Study: Hot Key-word Recognition

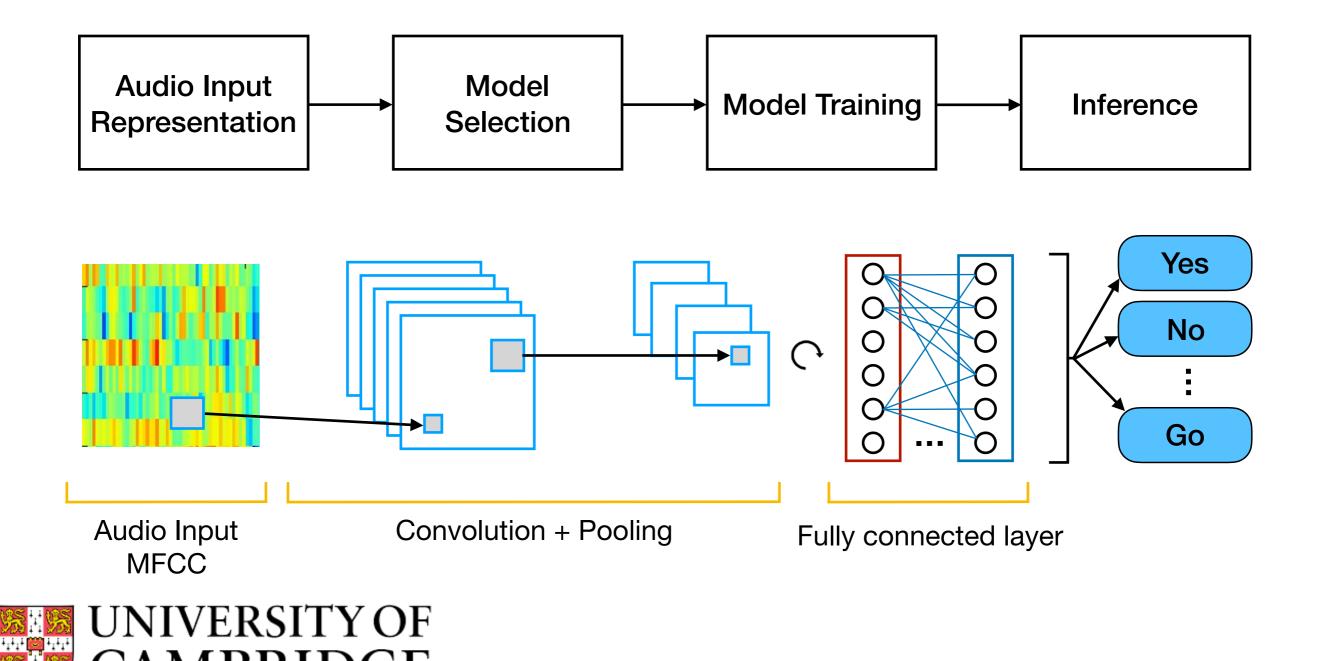
- Recognizing a small set of 10 spoken words
- Vocabulary: yes, no, up, down, left, right, on, off, go
- Silence and Unknown
- 16 KHz, 16-bit audio

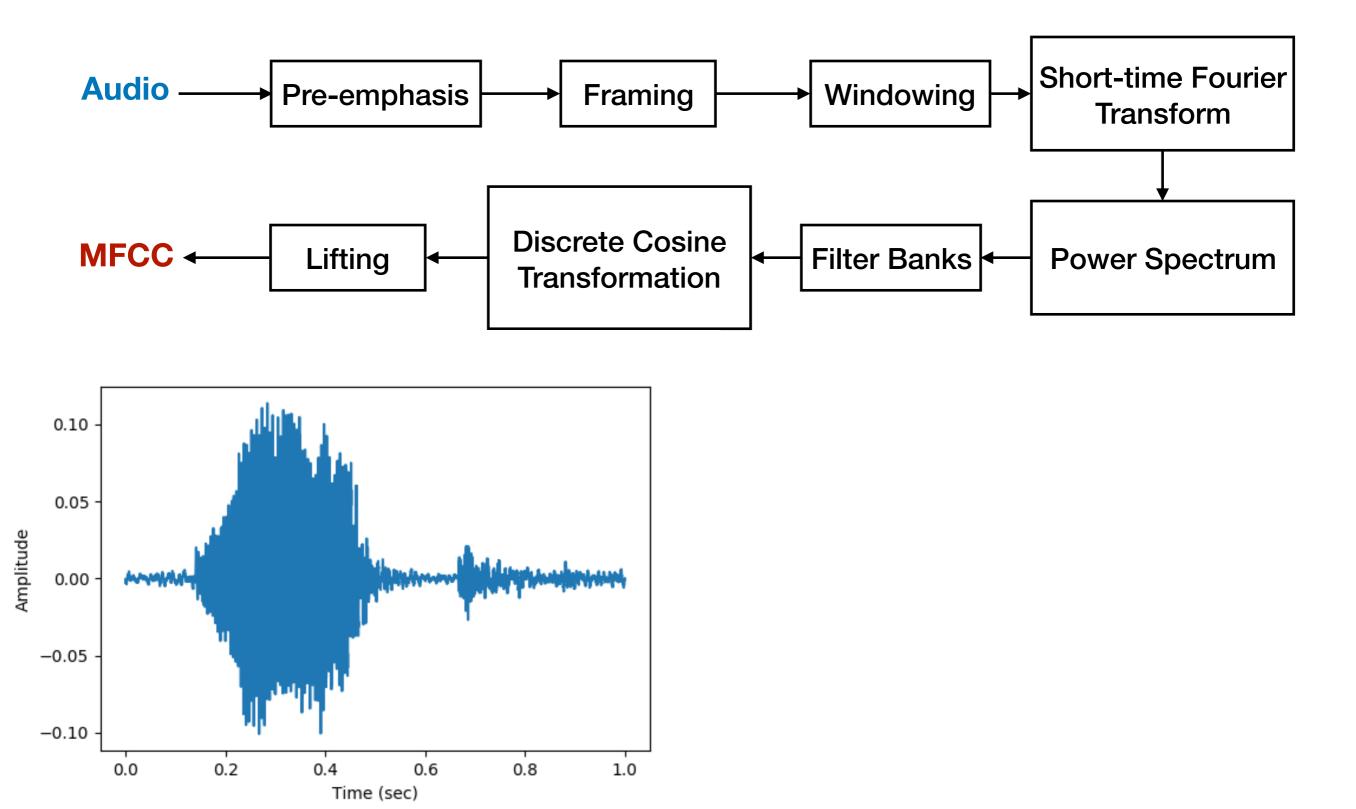


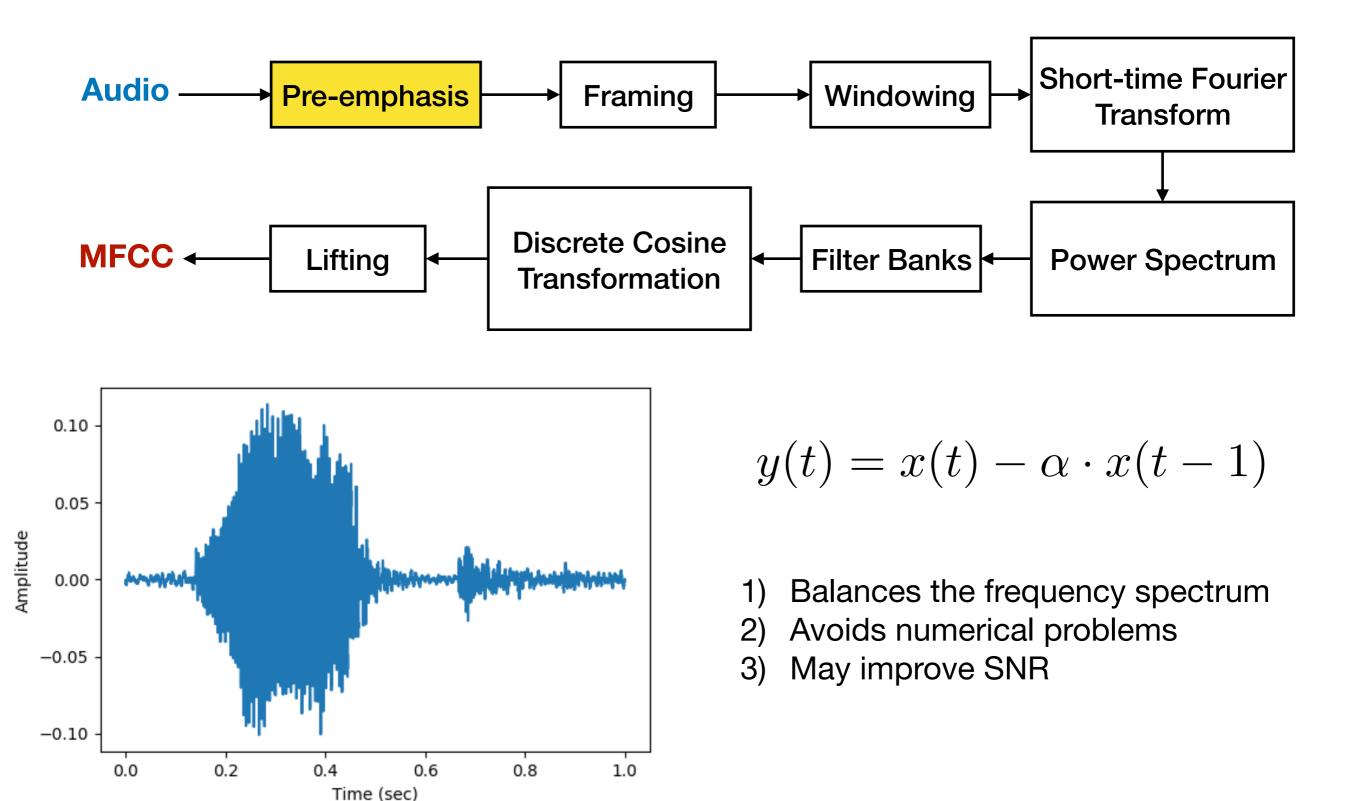
Acknowledgement: Pete Warden, Google

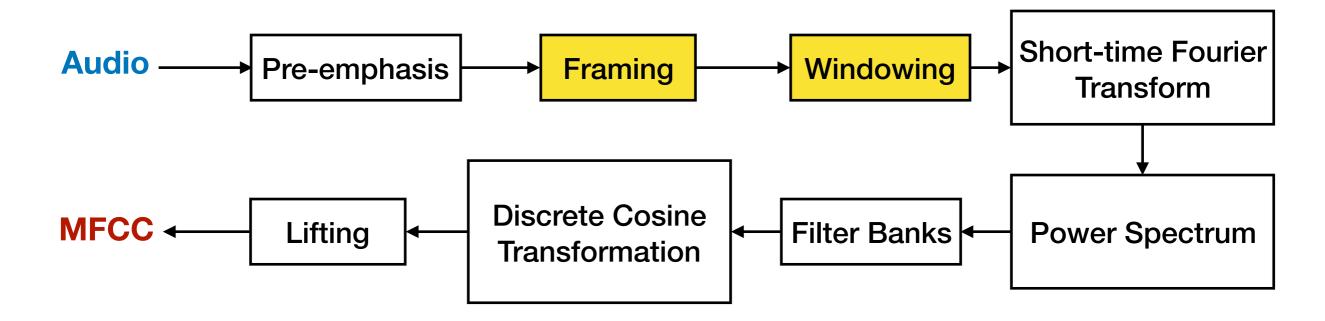
https://www.tensorflow.org/versions/master/tutorials/audio_recognition

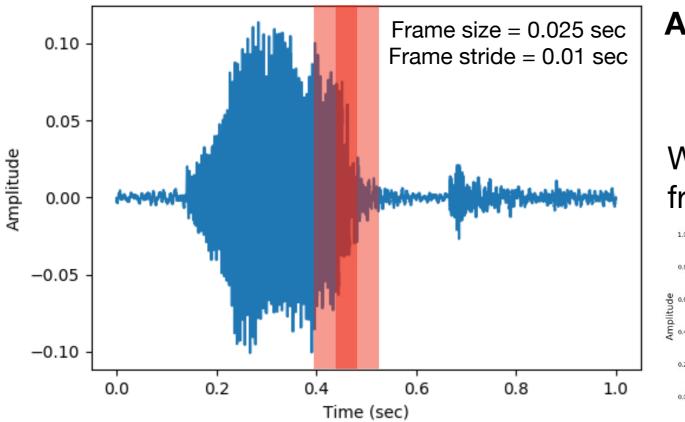
Steps in Building a Key-word Recognizer







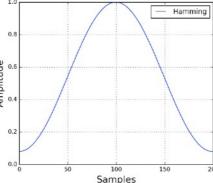




Assumption:

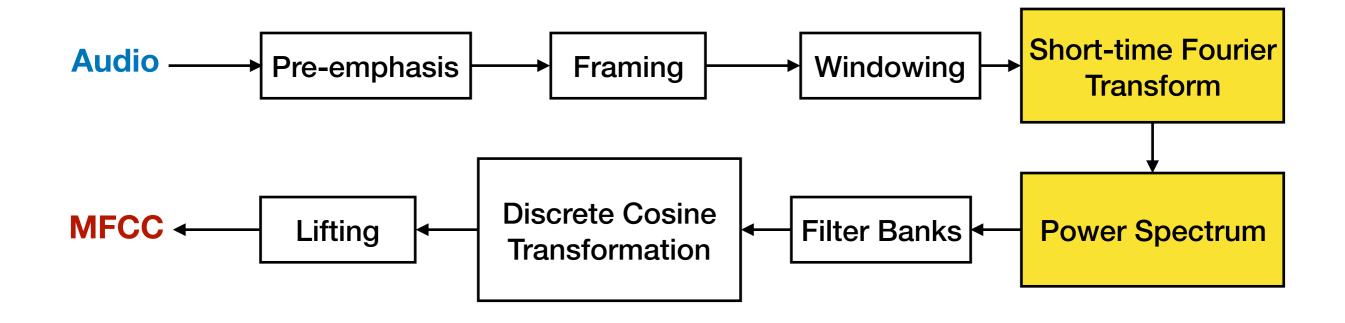
Frequencies in a signal are stationary over a very short period of time

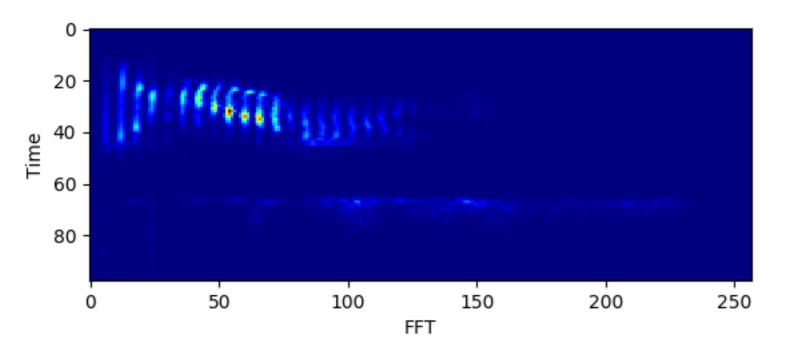
We want good approximation of the frequency contour



Counteract assumptions in FFT that the data is infinite

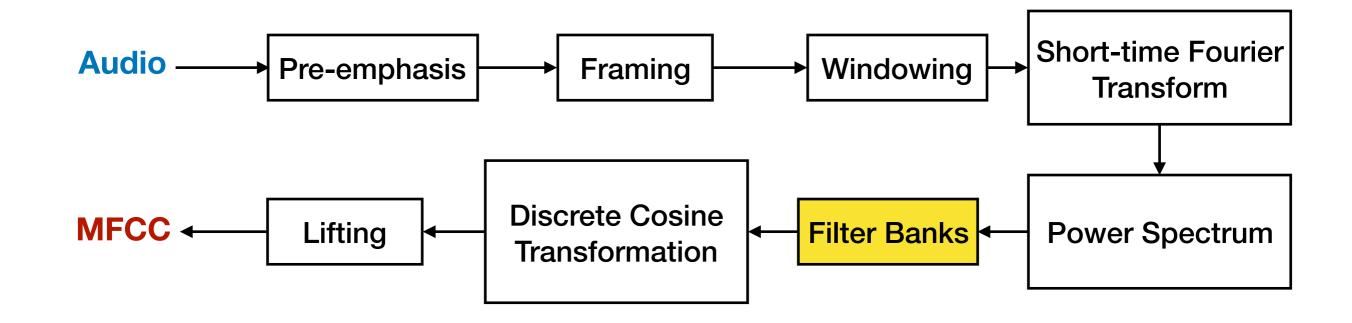
Reduce spectral leakage

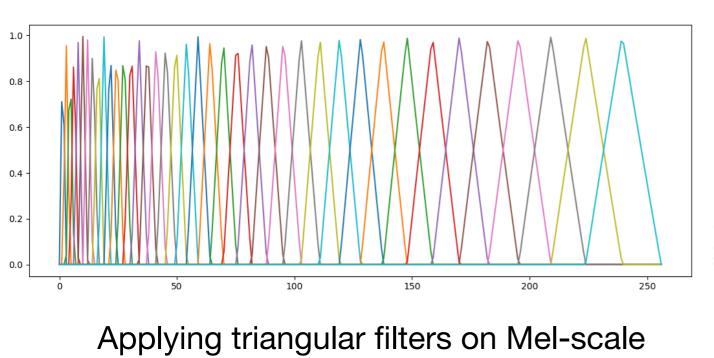




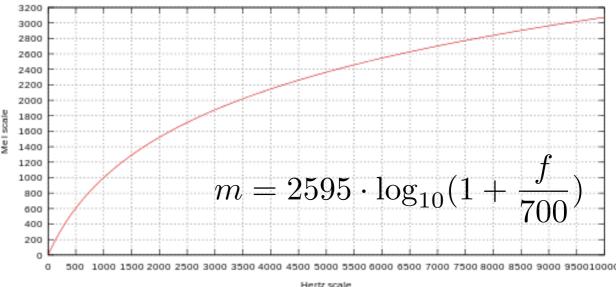
N-point FFT on each frame N is typically 256 or power of 2

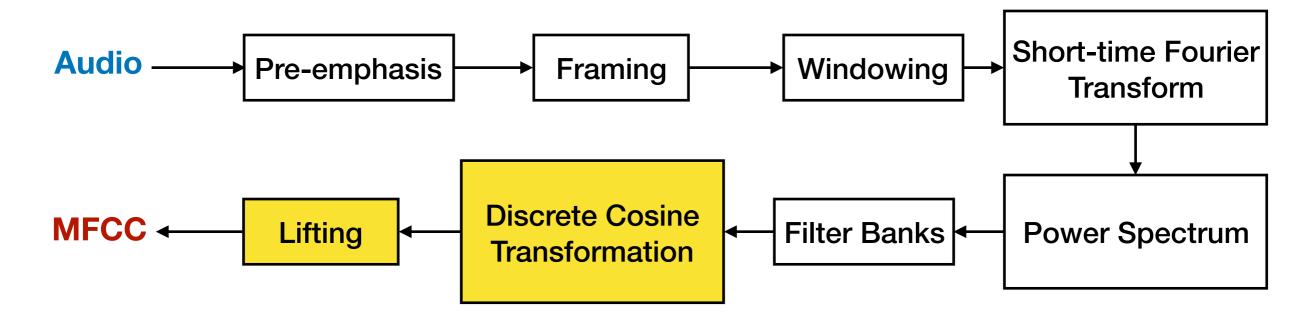
$$P = \frac{|FFT(x_i)|^2}{N}$$

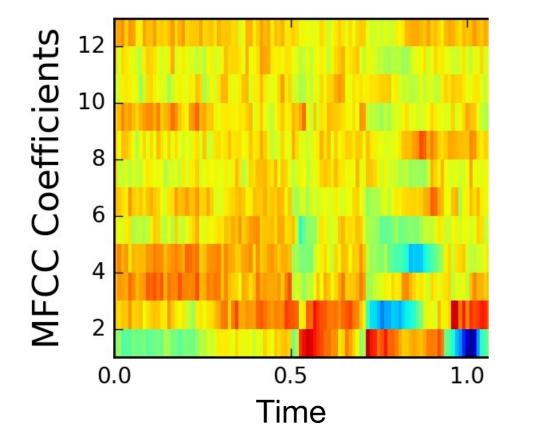




Mel-scale tries to mimic the non-linear human ear perception of sound





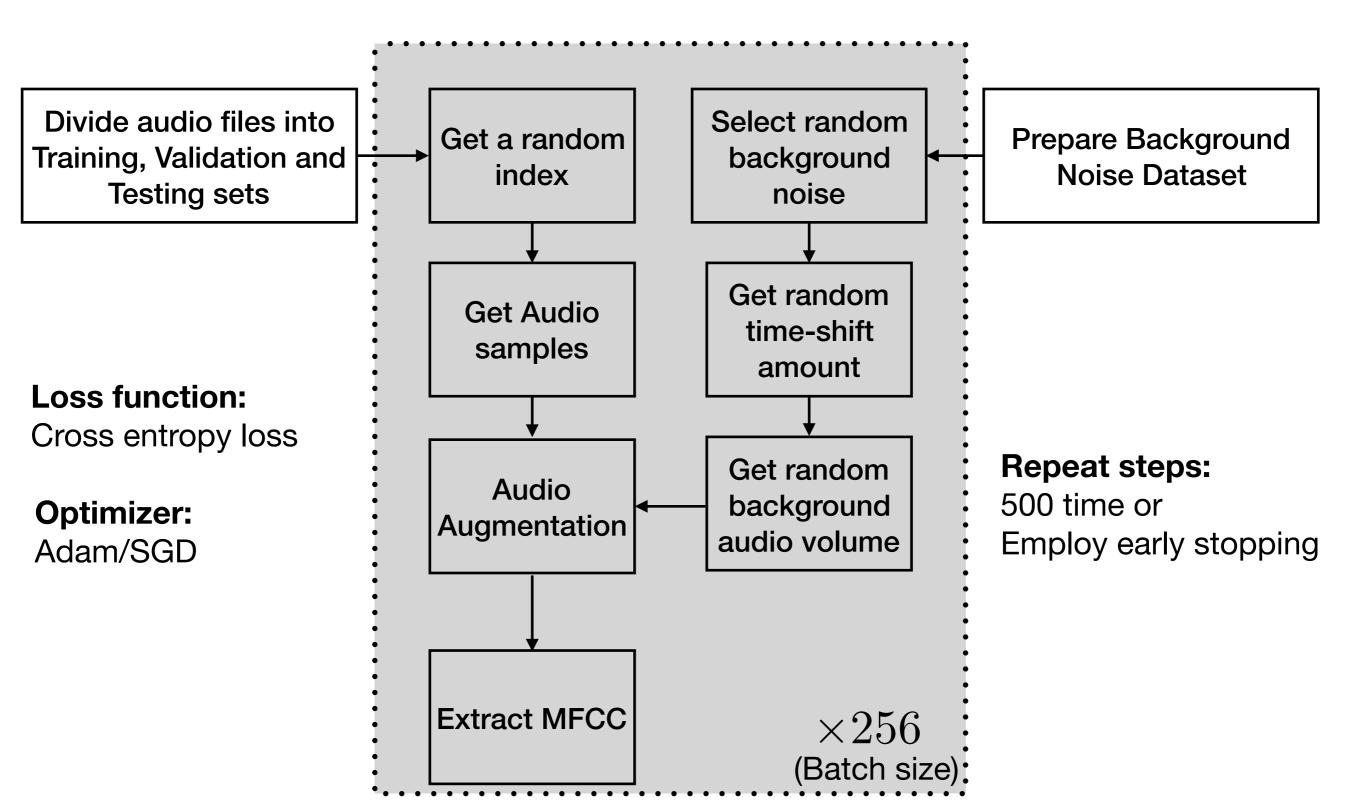


Filter-bank coefficients are highly correlated Could be problematic in some learning algorithms

Discrete Cosine Transform (DCT) is used to decorrelate and compress filter-bank coefficients

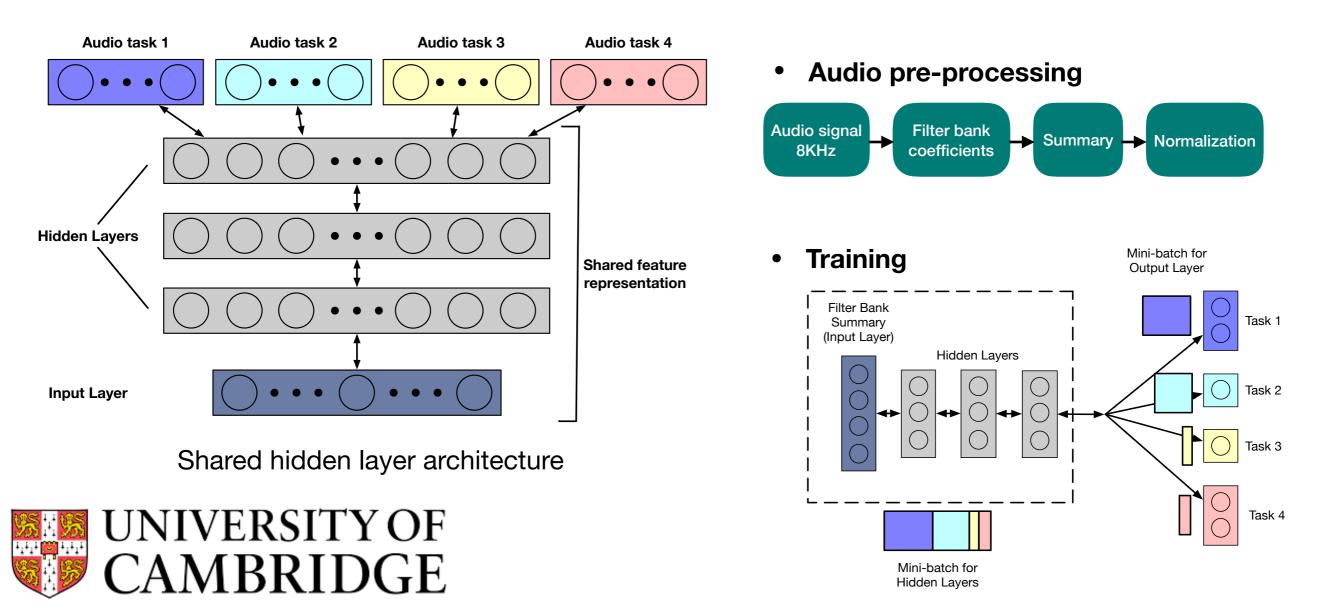
Sinusoidal lifting can be applied to de-emphasize higher MFCC coefficients

Convolutional Neural Network Training for Hot Key-word Recognition



Multi-task Audio Inferencing

- Objective: Infer multiple contexts from the same input audio
 - Who is the speaker? Is the person stressed? Male or female speaker?
- Multi-task learning applies an inductive transfer across domains while learning representations in parallel



Open Research Questions

- How can we use unsupervised data to bootstrap the training procedure and reduce the amount of labeled data?
- How can we squeeze the resource requirements of largescale neural networks for resource-constrained devices?
- Protecting privacy of the users.
- Multi-modal rich modeling of sensor data for accurate high-level context-recognition.

References

- N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A. Campbell. A survey of mobile phone sensing. IEEE Computer Magazine. Vol. 48. No 9. September 2010.
- K.K. Rachuri, M. Musolesi, C. Mascolo, P.J. Rentfrow, C. Longworth, A. Aucinas. EmotionSense: A Mobile Phones based Adaptive Platform for Experimental Social Psychology Research. Ubicomp'10. September 2010.
- S. Hemminki, P. Nurmi, S. Tarkoma, Accelerometer-based transportation mode detection on smartphones, SenSys 2011.
- S. Bhattacharya and N.D. Lane, Sparsification and Separation of Deep Learning Layers for Constrained Resource Inference on Wearables, SenSys 2016.
- P. Georgiev, S. Bhattacharya, N.D. Lane, C. Mascolo, Low-resource Multi-task Audio Sensing for Mobile and Embedded Devices via Shared Deep Neural Network Representations. IMWUT (UbiComp) September 2017.

