Task 8: Viterbi algorithm

Step 1: Viterbi

Imagine you observed a sequence of dice rolls produced by two dice: fair and
loaded. Can you figure out when a fair dice was rolled and when a loaded one? If
you have a Hidden Markov Model of the rolls, you can use the Viterbi algorithm
to calculate the most likely sequence of hidden states underlying an observed
sequence.

In this task, you will implement the Viterbi algorithm for the dice rolls. In the
next task, you will be asked to use it for a different type of data, so you might
want to make your code flexible, e.g., using generics.

The Viterbi algorithm operates in time steps, where each step corresponds to
an element in the sequence. Throughout the algorithm, we maintain two data
structures, which keep track of:

1. the most probable previous hidden state for each of the possible current
hidden states (suggested: List<Map<DiceType, DiceType>>). This was
called v in the lecture. Make sure to account for the fact that there is no
previous step for the first step.

2. path probabilities, i.e., the probability of a hidden state at each step based
on the previous hidden state that maximizes this probability (suggested:
List<Map<DiceType, Double>>). These are called § in the lecture.

Initializing

The probability of a state starting the sequence at ¢ = 0 is just the probability of
it emitting the first symbol. There is no transition, so make sure to account for
it in the best previous state structure (1). In fact, the first observed symbol is
always the special start symbol which can only be emitted by the special hidden
start state. You shouldn’t have to code this information explicitly. Can you see
how it is expressed in your transition and emission tables?

Step by step

In every next step ¢ > 0, you need to account for both emission and transition
probabilities, i.e., you need to find the most probable previous—current state pair
that accounts for the observed emissions. What is the probability of a transition
from the previous state to the current one?

For example, let’s assume that the roll of 5 at time ¢t = 6 in the observed sequence
was followed by the roll of 3 at t = 7. The probability of the last roll being
produced by a fair dice depends on the probability of the hidden states at t = 6.
Specifically, we want the hidden state at t = 6 that maximizes the probability


https://docs.oracle.com/javase/tutorial/java/generics/types.html

of the roll being produced by a fair dice at ¢ = 7. This means that, for the fair
state, you should store the following in the path probabilities data structure:

5F(7) = max (51(6)0,1pr (3))

i€F,L

Again, bp(3) is the probability of emitting a dice roll of 3 from a fair dice. a;p
is the probability of a transition from state i to the fair state. Crucially, ;(6)
is the probability that state ¢ was the hidden state at ¢ = 6, which is stored in
your path probabilities data structure (2).

In fact, you should know by now to use logarithms instead of pure probabilities.
(Why?) Make sure to adjust your formula in the code accordingly.

Now you need to repeat this calculation for all the possible current hidden
states [in our example, &1, (7)] and store the value in the path probabilities data
structure.

The best previous hidden state for the fair state is the state ¢ which maximizes
the formula above. You should store it in the best previous state data structure
(1), together with the equivalents for all other possible current hidden states.

Grand finale

Once you repeat the above calculation for every element in the sequence, i.e.,
for all ts, you can then figure out the most probable hidden state sequence that
produced the observations (including the special start and end observations) by
backtracking.

The final hidden state in your sequence should be the special end state emitting
the special observed end symbol. What is the best previous state for this end
state?

Continue backtracing along the best previous state data structure until you reach
the beginning of the hidden sequence. Make sure that your hidden sequence has
the same length as the observed one.

Viterbi calculates the most likely single sequence of hidden states. How might
you go about calculating the probability of being in a state at a particular time?
Is the most likely sequence the same as the sequence of most likely individual
states?

Step 2: Evaluation

It’s time to check how good your Viterbi prediction of the hidden state sequence
is. We are mostly interested in our performance on the loaded state, so the



accuracy measure you used so far is not very informative as it is a summary
metric over all cases.

In this step, you should calculate the precision, recall and F-measure
that your algorithm achieves for the loaded state across a data set. In
Exercise8Tester we split the data into a sample train:dev:test split, so that
you can easily check if your code works. You will need to replace this code with
10-fold cross-validation to get a tick.

Precision

Precision is the fraction of the states which were classified as the interesting
state (loaded in this case) that are really that state.

number of correctly predicted L

sion(L) =
precision(L) number of predicted L

Recall

Recall is the fraction of the interesting states that were correctly predicted as
such.

number of correctly predicted L

(L) =
recall(L) true number of L

F-measure

F-measure is a combination of precision and recall. There are different forms of
F-measure which weight the precision and recall differently, but the one we will
be using is the F1-measure which weights them equally. This is calculated as
the harmonic mean of precision and recall:

precision X recall

F=2x —
precision + recall

How would you calculate each of the above scores for a single sequence? When
calculating the scores for a dataset, remember that sequences can have different
lengths.


https://en.wikipedia.org/wiki/Precision_and_recall#Precision
https://en.wikipedia.org/wiki/Precision_and_recall#Precision

	Task 8: Viterbi algorithm
	Step 1: Viterbi
	Initializing
	Step by step
	Grand finale


	Step 2: Evaluation
	Precision
	Recall
	F-measure



