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So far we’ve looked at (statistical) classification.
Experimented with different ideas for sentiment detection.
Let us now talk about . . .

the weather!



So far we’ve looked at (statistical) classification.
Experimented with different ideas for sentiment detection.
Let us now talk about . . . the weather!



Weather prediction

Two types of weather: rainy and cloudy

The weather doesn’t change within the day

Can we guess what the weather will be like tomorrow?

We can use a history of weather observations:
P (wt = Rainy |wt−1 = Rainy, wt−2 = Cloudy, wt−3 = Cloudy, wt−4 =

Rainy)

Markov Assumption (first order):
P (wt |wt−1, wt−2, . . . , w1) ≈ P (wt |wt−1)

The joint probability of a sequence of observations / events is
then:

P (w1, w2, . . . , wt) =
n∏

t=1
P (wt |wt−1)
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Markov Chains

Tomorrow
Rainy Cloudy

Today
[ ]

Rainy 0.7 0.3
Cloudy 0.3 0.7

Transition probability matrix

0.3

0.7

0.3

0.7

Two states: rainy and cloudy

A Markov Chain is a stochastic process that embodies the
Markov Assumption.
Can be viewed as a probabilistic finite-state automaton.
States are fully observable, finite and discrete; transitions are
labelled with transition probabilities.
Models sequential problems – your current situation depends
on what happened in the past



Markov Chains

Tomorrow
Rainy Cloudy

Today
[ ]

Rainy 0.7 0.3
Cloudy 0.3 0.7

Transition probability matrix

0.3

0.7

0.3

0.7

Two states: rainy and cloudy

A Markov Chain is a stochastic process that embodies the
Markov Assumption.
Can be viewed as a probabilistic finite-state automaton.
States are fully observable, finite and discrete; transitions are
labelled with transition probabilities.
Models sequential problems – your current situation depends
on what happened in the past



Markov Chains

Tomorrow
Rainy Cloudy

Today
[ ]

Rainy 0.7 0.3
Cloudy 0.3 0.7

Transition probability matrix

0.3

0.7

0.3

0.7

Two states: rainy and cloudy

A Markov Chain is a stochastic process that embodies the
Markov Assumption.
Can be viewed as a probabilistic finite-state automaton.
States are fully observable, finite and discrete; transitions are
labelled with transition probabilities.
Models sequential problems – your current situation depends
on what happened in the past



Markov Chains

Useful for modeling the probability of a sequence of events

that can be unambiguously observed

Valid phone sequences in speech recognition
Sequences of speech acts in dialog systems (answering,
ordering, opposing)
Predictive texting

What if we are interested in events that are not
unambiguously observed?
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Markov Model
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Markov Model: A Time-elapsed view



Hidden Markov Model: A Time-elapsed view

Hidden

Observed

Underlying Markov Chain over hidden states.
We only have access to the observations at each time step.
There is no 1:1 mapping between observations and hidden states.
A number of hidden states can be associated with a particular
observation, but the association of states and observations is governed by
statistical behaviour.
We now have to infer the sequence of hidden states that correspond to a
sequence of observations.



Hidden Markov Model: A Time-elapsed view

Hidden

Observed

Rainy Cloudy[ ]
Rainy 0.7 0.3
Cloudy 0.3 0.7

Transition probabilities P (wt|wt−1)

Umbrella No umbrella[ ]
Rainy 0.9 0.1
Cloudy 0.2 0.8

Emission probabilities P (ot|wt)
(Observation likelihoods)



Hidden Markov Model: A Time-elapsed view – start and
end states

s0 sf Hidden

Observed

Could use initial probability distribution over hidden states.
Instead, for simplicity, we will also model this probability as a transition,
and we will explicitly add a special start state.
Similarly, we will add a special end state to explicitly model the end of
the sequence.
Special start and end states not associated with “real” observations.



More formal definition of Hidden Markov Models; States
and Observations

Se = {s1, . . . , sN} a set of N emitting hidden states,
s0 a special start state,
sf a special end state.

K = {k1, . . . kM} an output alphabet of M observations
(“vocabulary”).

k0 a special start symbol,
kf a special end symbol.

O = O1 . . . OT a sequence of T observations, each one
drawn from K.

X = X1 . . . XT a sequence of T states, each one drawn
from Se.



More formal definition of Hidden Markov Models;
First-order Hidden Markov Model

1 Markov Assumption (Limited Horizon):Transitions depend
only on current state:

P (Xt|X1...Xt−1) ≈ P (Xt|Xt−1)

2 Output Independence: Probability of an output observation
depends only on the current state and not on any other states
or any other observations:

P (Ot|X1...Xt, ..., XT , O1, ..., Ot, ..., OT ) ≈ P (Ot|Xt)



More formal definition of Hidden Markov Models; State
Transition Probabilities

A: a state transition probability matrix of size (N +2)× (N +2).

A =



− a01 a02 a03 . . . a0N −
− a11 a12 a13 . . . a1N a1f

− a21 a22 a23 . . . a2N a2f

− . . . . .
− . . . . .
− . . . . .
− aN1 aN2 aN3 . . . aNN aNf

− − − − − − − − −


aij is the probability of moving from state si to state sj :

aij = P (Xt = sj |Xt−1 = si)

∀i

N+1∑
j=0

aij = 1
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More formal definition of Hidden Markov Models; Start
state s0 and end state sf

Not associated with “real” observations.
a0i describe transition probabilities out of the start state into
state si.
aif describe transition probabilities into the end state.
Transitions into start state (ai0) and out of end state (afi)
undefined.



More formal definition of Hidden Markov Models; Emission
Probabilities

B: an emission probability matrix of size (M + 2)× (N + 2).

B =



b0(k0) − − − − − − − −
− b1(k1) b2(k1) b3(k1) . . . bN (k1) −
− b1(k2) b2(k2) b3(k2) . . . bN (k2) −
− . . . . −
− . . . . −
− . . . . −
− b1(kM ) b2(kM ) b3(kM ) . . . bN (kM ) −
− − − − − − − bf (kf )



bi(kj) is the probability of emitting vocabulary item kj from state si:

bi(kj) = P (Ot = kj |Xt = si)

Our HMM is defined by its parameters µ = (A,B).
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Examples where states are hidden

Speech recognition
Observations: audio signal
States: phonemes

Part-of-speech tagging (assigning tags like Noun and Verb to
words)

Observations: words
States: part-of-speech tags

Machine translation
Observations: target words
States: source words



Today’s task: the dice HMM

Imagine a fraudulous croupier in a casino where customers bet
on dice outcomes.
She has two dice – a fair one and a loaded one.
The fair one has the normal distribution of outcomes –
P (O) = 1

6 for each number 1 to 6.
The loaded one has a different distribution.
She secretly switches between the two dice.
You don’t know which dice is currently in use. You can only
observe the numbers that are thrown.



Today’s task: the dice HMM

s0

s1
loaded

s2
fair

sf

O0 = k0 O1 = 5 O2 = 2 O3 = 4 O4 = 6 Of = kf

a01

a02

a11

a22

a12a21

a1f

a2f

b0(k0)

b2(6) = 1/6b2(5) = 1/6

b1(2)
b1(4)b1(5)

b1(6)

bf (kf )

There are two states (fair and loaded), and two special states (start s0 and end sf ).
Distribution of observations differs between the states.
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Fundamental tasks with HMMs

Problem 1 (Labelled Learning)
Given a parallel observation and state sequence O and X,
learn the HMM parameters A and B. → today

Problem 2 (Unlabelled Learning)
Given an observation sequence O (and only the set of emitting
states Se), learn the HMM parameters A and B.

Problem 3 (Likelihood)
Given an HMM µ = (A,B) and an observation sequence O,
determine the likelihood P (O|µ).

Problem 4 (Decoding)
Given an observation sequence O and an HMM µ = (A,B),
discover the best hidden state sequence X. → Task 8



Your Task today

Task 7:
Your implementation performs labelled HMM learning, i.e. it
has

Input: dual tape of state and observation (dice outcome)
sequences X and O.

(s0) F F F F L L L F F F F L L L L F F (sf )
(k0) 1 3 4 5 6 6 5 1 2 3 1 4 3 5 4 1 2 (kf )

Output: HMM parameters A, B.
Note: you will in a later task use your code for an HMM with
more than two states. Either plan ahead now or modify your
code later.



Parameter estimation of HMM parameters A, B

Transition matrix A consists of transition probabilities aij

aij = P (Xt+1 = sj |Xt = si) ∼
counttrans(Xt = si, Xt+1 = sj)

counttrans(Xt = si)

Emission matrix B consists of emission probabilities bi(kj)

bi(kj) = P (Ot = kj |Xt = si) ∼
countemission(Ot = kj , Xt = si)

countemission(Xt = si)

(Add-one smoothed versions of these)
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