
Statistical significance for practical experiments

The primary reason for running significance tests is so that we do not draw
conclusions and take actions (or allow others to do so) based on evidence which is
too weak. Sometimes apparent effects are simply due to chance: most importantly
for us, they may be due to natural variation in the test data. Significance testing
when deciding whether or not a new system is better than a baseline is all about
reducing the possibility we are fooling ourselves because of a chance effect. The
null hypothesis for that situation is that the new system has performance
which is equivalent to the baseline: we are trying to see whether we have good
evidence that the null hypothesis is false.

Researchers are normally optimistic that their new system will work. In many
cases, we really want our new system to work. That might enable us to write
a paper, get more funding, persuade our boss that we are a good person or
whatever. The most essential thing to remember about significance testing is
that we need to adopt a quite different perspective and be sceptical. We have
to start by assuming that our new system does not actually work any better
than the baseline (that the null hypothesis is true) and then try and see whether
the results can persuade our sceptical selves otherwise. In fact, this is part of
the more general process of doing research: to see whether we can defend our
approach against reasonable doubt we have to (temporarily) put ourselves in the
position of a sceptic and see whether the results we find have another explanation
than the one we want to claim. Significance testing is just one aspect of this.

There are standard significance levels which are used in published work. This is
just a convention: we use these particular levels because that is what everyone
else does. Which level to use depends on the cost of the decisions we might
make. For instance, if we have a new system which is very easy to deploy,
we need less evidence to use it than if we’re considering a complex change.
Obviously, the extent of the improvement also matters: we might have done lots
of trials and so be very confident that a new system is better, but decide that
the degree of improvement is insufficient to justify switching. (Most significance
tests are sensitive to the degree of improvement, in that it will be easier to show
significance if the improvement is large, but not all are.)

For the moment, let’s just consider significance at the 1% level. What we are
claiming when we say a result is significant at that level is that there is less than
1% chance that we have fooled ourselves into thinking that the null hypothesis
is false. Suppose we try a test on 200 items of test data and obtain a result
with our new system which is significantly different at the 1% level from the
baseline. What we are claiming is equivalent to saying that if we tested the
baseline system 100 times on different sets of 200 items, we would only once get
as good performance as our new system.

In fact, if we had that much test data, we could run such an experiment. In
some cases, simulating an experiment explicitly is actually a good way of doing
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significance testing. But we usually use standard significance tests which rely
on assumptions about the way our data behaves. The particular test we will
examine in this course is the sign test.

Sign test

The sign test is appropriate when we have paired data, so it is a natural fit for a
situation where we have tried a baseline system on some test data and want to
compare a new system with the baseline. We also make the assumption that
the individual tests on data items are not linked. In the sentiment systems, we
consider each document in isolation, so this condition holds. Our null hypothesis
is that each system is equally good. This means that we would expect, on
average, that they would obtain the same overall accuracy on a particular test
set. We would not expect them to get exactly the same results on each piece of
data, but the cases where the new system is better than the baseline would be
approximately balanced by the cases where it was worse.

To see how the sign test works, let’s first consider a case where the ground
truth data is numerical, and the systems being tested both produce fine-grained
numerical values. Under such circumstances, ties would be vanishingly rare. For
instance, we might have systems that estimate the weight of elephants and give
results in milligrams. We can essentially always say whether or not the new
system is closer to ground truth than the baseline, even if it is only very slightly
closer. Suppose do n trials: we count the cases where the new system is better,
and call that number plus, and call the cases where it is worse minus. If the
null hypothesis is true, the baseline and the new system are actually equally
good, but just happen to give slightly different results on particular elephants.
The probability of getting plus on a particular trial is equal to the probability of
getting minus. Thus the observed counts of plus and minus obey a binomial
distribution with a mean of 0.5n under the null hypothesis. The sign test simply
checks how likely it is that the actual observations (or more extreme observations
than the actual observations) could arise in that situation: i.e., it is a special
use of a binomial distribution.

The binomial distribution gives the following probability for an observation to
be exactly k given n trials and a probability of success of q:

(
n

k

)
qk(1− q)n−k

We want to include the probabilities of the more extreme observations. Assuming
for the moment we are only interested in the lower half of the distribution (a
one-tailed test, see below), we are interested in the probability that a trial is
less than or equal to k, where k is the minimum of plus and minus:
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For the sign test, q is always 0.5:
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0.5n

However, we are actually interested in the probability that the observed value
is more extreme in either direction (our system might actually be worse than
baseline). Because the binomial is symmetric, we can simply double this value
to obtain the two-tailed sign test.
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(A note: the elephant estimation example is purely for expository purposes. The
sign test ignores the magnitude of the difference between the ground truth and
the estimate. Two systems could be equivalent according to the sign test, even
if one occasionally made huge errors in the approximation. So it’s unlikely we’d
actually use the sign test in this situation.)

Ties

In testing our sentiment systems, we naturally get a large number of ties when
both systems are correct or both incorrect. In order to apply the sign test, we
distribute these ties evenly between plus and minus. Since all our numbers must
be integers, if we get an odd number of ties, we pretend we did one more test
which came out as a tie. Thus, if we call the actual number of ties Null:

n = 2dNull
2 e+ Plus + Minus

k = dNull
2 e+ min {Plus, Minus}

Note that we have a slight problem with the formula we gave for the sign test in
the situation where the value of k is actually equal to the mean of the binomial
and n is an even number, because we can end up counting part of the probability
twice. For instance, if n is 4, the terms of the binomial are 1, 4, 6, 4, 1. In this
case, if k is 2, we will include the probability mass for k twice in:
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This effect shows up if we compare a system with itself: we can end up with a
“probability” slightly greater than 1. In practice, this is unimportant, because
we would never apply the sign test when the observed value was equal to the
predicted mean, since it is obvious that the null hypothesis is not disproved.

Using the normal approximation to the binomial

Calculating the values for the sign test can be slightly tricky, because we are
dealing with very small and very large numbers for usual values of n. While
it is possible to do this, it is easier to simply use the normal approximation
to the binomial. That is, we approximate the binomial distribution with a
normal distribution with the same mean, and with variance equal to 0.25n.
For instance, with 100 trials, the mean is 50 and the variance is 25. Standard
deviation is the square root of the variance: i.e., 5 in this example. Because the
normal distribution is continuous, we have to add 0.5 to k and test that value
for significance.

This test is equivalent to checking whether or not k is inside the relevant
confidence interval. For instance, the 95% confidence interval is about 1.96 x
standard deviation, which gives us a very convenient rule of thumb calculation
that we can test for significance by checking whether the observed value is more
than two standard deviations from the mean.

One-tailed or two-tailed?

The decision to use a one-tailed or two-tailed test can be the cause of considerable
controversy. Our recommendation to use the two-tailed test is simply because
this is harder to beat and hence less open to criticism (in the usual situation
where you are testing your own system against a baseline). You can use the
one-tailed test if you are absolutely sure you know what you’re doing, but you
must never switch from a two-tailed test to a one-tailed test if the two-tailed
test does not demonstrate significance!

Variance and error bars

Consider a system for estimating elephant weights again. Suppose we have
done lots of trials that show us how close the system gets to the real weight of
the elephant, and we have adjusted this system so that it is equally likely to
overestimate or underestimate the elephant weight. Perhaps we find that the
system is within 100kg of the real elephant weight 95% of the time. Then, when
we estimate the weight of an unseen elephant, we could quote a figure as +/-
100kg. For instance: 6,400 +/- 100 kg. These confidence limits are shown on a
graph using error bars.
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In many ways, variance is more useful than p-values (see https://www.youtube.
com/watch?v=5OL1RqHrZQ8).

In this course, the ML methods we are using are trained deterministically, so for
given training data and parameter settings, you should always get the same result
on some given test data. But when you do cross-validation, the variance gives
you some idea of how much the results will vary with different data. Some other
ML techniques, including most neural network approaches, will give different
results on the same data. When using such techniques, it is good practice to do
at least three replications (more if there is a lot of variability) and to report the
mean and variance of the results.

Soft indications of variance

Consider elephant weighing again. If we know that our system is only accurate
to within 100kg, we should not quote the weight it estimates to the nearest 1kg.
The number of significant digits we use gives a soft indication of accuracy even
if we are not using error bars. An extremely frequent mistake is to quote ratios
to an excessive number of decimal places. For instance, if we do 123 trials and
obtain the correct result in 63 cases, we should give the accuracy as 0.51 rather
than 0.5122. An easy way to think about this is just to think about the raw
numbers we are considering, and compare with the case where we are doing a
nice round number of trials (e.g., 100). It makes no sense to quote the accuracy
out of 123 trials as .5122, just as it would make no sense to say that we got 51.22
results correct out of 100.

We might decide to use even fewer significant figures when we know there are
errors in measurements. For instance, if we do 1230 trials and obtain 630 correct
results, we could potentially give the accuracy as 0.512, but if we know that the
95% confidence limits on these results are around +/- 10, it would be better to
quote the number as 0.51 instead.
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