
Brandes algorithm

These notes supplement the notes and slides for Task 11.
They do not add any new material, but may be helpful in understanding the
Brandes algorithm for calculating node betweenness centrality. See Brandes’
papers for further details (URLs are in the task instructions). As in the lectures,
I use the notation from Brandes (2008) but the original paper is Brandes (2001).

Node betweenness centrality: the definition.

Betweenness centrality for a node v is defined in terms of the proportion of
shortest paths that go through v. Specifically:

1. Assume a directed, unweighted, connected graph G =< V,E >.

2. Define σ(s, t) as the number of shortest paths between nodes s and t.

3. Define σ(s, t|v) as the number of shortest paths between nodes s and t
that pass through v.

4. CB(v), the betweenness centrality of v is defined as:

CB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

If s = t, then σ(s, t) = 1. If v ∈ s, t, then σ(s, t|v) = 0.

Brandes’ algorithm is for the case where we want to calculate this efficiently for
every node.

Naive approach

The approach taken here to explaining Brandes’ algorithm, is to start by dis-
cussing a very naive implementation and progressively refine it. Taking the
definition of CB(v) above, a naive approach is as follows:

1. For every node v in V , set CB(v) = 0.

2. For each node s in V , use a BFS algorithm to find all the shortest paths
between s and all other nodes. Store all these paths for each pair s,t.

3. For each pair s,t, count the number of times v appears in the stored paths
to give σ(s, t|v) and divide by the total number of paths between s and t
(i.e., σ(s, t)). Add the result to CB(v).

4. CB(v) gives the final result.

1

An BFS algorithm to find all shortest paths with unweighted graphs is shown
below, using the same notation as in the Brandes (2008) pseudocode. In later
refinements of the Brandes algorithm, this will be integrated into the main code.

1. Initialization: for each node w:
1. Mark w as unvisited by setting dist[w] (the distance between s and

the node w) to infinity.
2. Set Pred[w] (nodes that immediately precede w on a shortest path

from s) to the empty list.
3. Set Paths[w] (the list of all shortest paths from s to w) to the empty

list.
Starting node:
1. Choose the starting node s and put it on the queue Q.
2. Set dist[s] to 0.

2. while Q is not empty, do:
1. dequeue v from Q
2. For each node w such that there is an edge in E from v to w, do

1. if dist[w] is infinity, then
1. set dist[w] to dist[v] + 1
2. enqueue w

2. if dist[w] = dist[v]+1 then
1. append v to Pred[w]

3. Collect all paths by following Pred[t] back to s for each t, storing paths
on Paths[w]. This step won’t be used in the more refined versions of the
algorithm, so is not elaborated here.

Note that, since we are doing a BFS starting at s, we never need to reset dist[w].

You may find it useful to think of each interation with a different s in terms
of what would happen if the graph were a physical net, with all links of equal
length, which you picked up by each successive s. The s node is at the top, and
some nodes are hanging at the bottom, with no nodes below them on shortest
paths. Informally, I will refer to these as terminal nodes. The backward phase,
where we collect paths, starts once we’ve reached all the terminal nodes.

Improving on the naive approach

There are a number of ways we might intuitively think of improving on the naive
approach. The steps below are chosen to move towards the Brandes algorithm.

Storage efficiency

The naive approach is very expensive in terms of storage. However we don’t need
to save anything about the paths between s and t once we’ve updated CB(v)

2

for each vertex v on those paths. Hence we could refine our naive algorithm as
follows:

1. For every node v in V , set CB(v) = 0.

2. For each node s in V :

1. Use a BFS algorithm to find all the shortest paths between s and all
other nodes. Store the paths for each target t.

2. For each t, for each vertex w that occurs on one of the stored paths,
count the number of times w appears in total to give σ(s, t|w) and
divide by the total number of paths between s and t (i.e., σ(s, t)).
Add the result to CB(w).

3. CB(w) gives the final result.

Integration with the shortest paths algorithm

We observe that the BFS algorithm involves spreading out from s to find the
shortest paths up to the terminal nodes (i.e., the ones which don’t have any
following nodes on the shortest paths from s) and then stepping back via the
saved predecessor nodes to actually output the paths for the terminal nodes and
all the previous nodes. Therefore, we are actually going back to s from each
node t through all the nodes v which are on the shortest path between s and t.
We could therefore add up the shortest paths at that point, rather than saving
them all and then checking whether v is a member.

For instance, we could use a 2-dimensional array to store values for σ(s, t|v) (two
dimensional because s is constant for our use of the array) and each time we
reach a node v on the return path from a node t we increment the array.

1. For every node v in V , set CB(v) = 0.

2. For each node s in V :

1. set S(v, t) to zero for all nodes v and t in V.

2. Use the BFS algorithm, as above, to reach each target t from s.

3. In the backward phase, increment S(v, t) as appropriate when each
node v is reached, rather than creating full paths.

4. At the end, divide each S(v, t) by the total number of paths between
s and t (i.e., S(s, t)). Add the result to CB(v).

3. CB(w) gives the final result.

3

Recursive calculation

The main difference between what we have above and the Brandes algorithm
is that the latter makes use of a recursive step in the backward phase to allow
direct calculation of the ratios for each v on the basis of its successor nodes on
the shortest paths to every following t.

For now, let’s simply pretend we have such a function, which we call Magic, and
a value δ(v) such that the following conditions hold:

1. δ(t) = 0 if t is a terminal node (as described above).

2. We can increment δ(v) via Magic every time we reach v from a node w
on the backward phase (i.e., v immediately precedes w in a shortest path
from s) based on the values of δ(w).

3. After we have finished with all the w values, δ(v) can be straightforwardly
accumulated into CB(v).

Here is revised pseudocode under this assumption:

1. For every node v in V , set CB(w) = 0.

2. For each node s in V :

1. set δ(v) to zero for all nodes v in V .

2. Use the BFS algorithm (much as before, differences in bold below)
while Q is not empty, do:

1. dequeue v from Q and push v onto a stack S
2. For each node w such that there is an edge in E from v to w, do

1. if dist[w] is infinity, then
set dist[w] to dist[v] + 1
enqueue w

2. if dist[w] = dist[v]+1 then
set σ(s, w) to σ(s, w) + σ(s, v)
append v to Pred[w]

3. while S is not empty, pop w off S

1. for all nodes v in Pred(w) set δ(v) to δ(v) + MAGIC(δ(w)).

2. unless w = s, set CB(w) = CB(w) + δ(w).

3. CB(v) gives the final result.

It will turn out that MAGIC requires that we know the number of shortest paths
between s and each node v, so we create these values in the forward phase of
the BFS as shown (i.e., σ(s, w)). We also need to make sure that the nodes are
visited in the correct order on the backward step, which we do by putting the

4

dequeued elements of Q onto a stack in the forward pass, and then visiting the
nodes in the order they are popped off the stack in the backward pass.

Brandes’ algorithm

We are now at the point where we essentially just need to describe MAGIC and
δ to have a complete account of the Brandes pseudocode. First we define δ, then
we look at a special case, where MAGIC is simple, and finally we look at the
full version of MAGIC.

Dependencies

In Brandes’ algorithm, the ratio of the shortest paths between s and t that go
through v and the total number of shortest paths between s and t is called the
‘pair-wise dependency’:

δ(s, t|v) = σ(s, t|v)
σ(s, t)

So:

CB(v) =
∑
s,t∈V

δ(s, t|v)

The one-sided dependency is defined as:

δ(s|v) =
∑
t∈V

δ(s, t|v)

and therefore:

CB(v) =
∑
s∈V

δ(s|v)

The point of doing this is as outlined above: δ(s|v) can be computed recursively,
on the basis of the values δ(s|w) for the nodes which follow v on shortest paths
from s (i.e., without iterating through all t for each v). Since we are always
calculating δ(s|v) for a particular s, we can just write δ(v).

5

Tree MAGIC

If the vertices and edges of all shortest paths from s form a tree, then it
will hopefully be intuitively clear that δ(v) can be computed simply. (This is
illustrated in Figure 1 on p7 in:

Brandes (2001) http://www.algo.uni-konstanz.de/publications/b-fabc-01.pdf

Look at this figure if you get confused by the following!)

In a little more detail:

1. Assume there is exactly one shortest path from s to each node t (this is
equivalent to the tree condition).

2. For any vertex v and any target t, either v lies on the (unique) shortest
path between s and t, in which case δ(s, t|v) = 1, or does not lie on the
path, in which case δ(s, t|v) = 0.

3. For any vertex w, such that v immediately precedes w on shortest paths
from s, v will lie on the shortest path from s to w. And, for any node x,
such that w immediately precedes x on shortest paths from s, v will lie on
the shortest path from s to x. And so on.

4. Hence we can simply total all the one-sided dependencies relating to paths
that go to nodes beyond each node w, and add one for every w, giving:

δ(v) =
∑
w

(1 + δ(w))

Ultimate MAGIC

The situation with the non-tree case, where there are alternative shortest paths
that bypass v, is more complex. Thinking about this in terms of the ratios which
are being accumulated, the issue is that some proportion of the shortest paths
to nodes beyond v will go through v but others will not, and we need a way to
determine this ratio. This is illustrated in Figure 2 in:

Brandes (2001) http://www.algo.uni-konstanz.de/publications/b-fabc-01.pdf

I recommend that you look at this figure.

Brandes’ equation for MAGIC is:

δ(v) =
∑
w

σs,v
σs,w

(1 + δ(w))

There are separate situations to consider, depending on whether the bypassing
edge arrives at one of the nodes w or beyond it. The intuition is that it is only

6

http://www.algo.uni-konstanz.de/publications/b-fabc-01.pdf
http://www.algo.uni-konstanz.de/publications/b-fabc-01.pdf

the situation where the bypassing edge arrives at one of the w that we have to
worry about. In other cases, the δs of the ws already incorporate the ratios of
the shortest paths appropriately. Thus we only need to look at the ratio of the
paths going between s and v compared with those going between s and w to
capture the extent to which there are bypassing paths going to w. The proof
that this is correct is given in Brandes (2001) but is a little messy (because he
has to incorporate the bypassing edges), so will not be described in any more
detail here.

Hence, in the pseudocode above, we replace the lines:

1. for all nodes v in Pred(w) set δ(v) to δ(v) + MAGIC(δ(w)).

with

1. for all nodes v in Pred(w) set δ(v) to δ(v) + σs,v

σs,w
(1 + δ(w)).

the MAGIC disappears and we have Brandes’ algorithm.

7

	Brandes algorithm
	Node betweenness centrality: the definition.
	Naive approach
	Improving on the naive approach
	Storage efficiency
	Integration with the shortest paths algorithm
	Recursive calculation

	Brandes' algorithm
	Dependencies
	Tree MAGIC
	Ultimate MAGIC

