Machine Learning and Bayesian Inference
How to evaluate Gaussian integrals

Sean B. Holden, 2012-18

1 Introduction

The following notes show how to evaluate the standard integral required in deriving the approximation
to the Bayes-optimal neural network.

2 Gaussian integrals: the simple case

The simplest version of the problem is to evaluate the integral
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This is a fairly standard integration problem and several solutions are available in text books. For
example, start by squaring it, so
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Then convert to polar co-ordinates, so x = r cos @, y = rsin § and the Jacobian is
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3 Gaussian integrals: the general case

The problem now is to evaluate the more general integral

I:/ exp (—; (XTAx+bTx+c)> dx

where A is an n X n symmetric matrix with real-valued elements, b € R" is a real-valued vector and
c € R. First of all, we can dispose of the constant part of the integrand as

1= /n exp (—; (XTAX + bTX)) exp (—g) dx = exp <—g> I

I'= / exp <—; (x"Ax + bTX)) dx.

We’re now going to make a change of variables, based on the fact that A has n eigenvalues v; and n
eigenvectors e; such that

where

Aei = v;€; (1)

for i = 1,...,n. The eigenvalues can be found such that they are orthonormal
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Multiplying (1) on both sides by A~ gives
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A Aei = Inei =e€e; = A V;€;

fori =1,...,n, where I, is the n x n identity matrix. Consequently
1
Aflei = —eg;
Vi
fori =1,...,n and A~! has the same eigenvectors as A, but eigenvalues 1/v;. As the eigenvectors

are orthonormal, any vector x can be written as

n
X = Z )\iei
i=1
for suitable values \;, and we can represent b as
n
b=> Bie;
i=1

in the same way. Next, we make a change of variables from x to
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To make a change of variables we need to compute the Jacobian and rewrite the integral. The Jacobian
for this transformation is
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As we saw above that

n
X = g i€
i=1

we have .
:Uj = Z /\iez(»j)
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where el(-j ) is the jth element of e;, and so

)

87)\]6 = ek .
Thus

J=|e e --- e,

That is, the determinant of the matrix having the eigenvectors as its columns. Define

E= e e - e,

such that J = |E|. As the eigenvectors are orthonormal we have
J? = [E||E| = |E||E"| = [EE"| = |I,| =1

andso J = 1.
Let’s now look at the integrand
xT Ax + bT'x.

Looking at the first term
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The second term simplifies in a similar way
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and so the integrand becomes
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Thus the result of changing the variable is that

I'= / exp <—; (XTAX—l— bTx)> dx
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What have we gained by changing the variable?
e We have changed a multiple integral into a product of single integrals.
o Each of these single integrals is almost of a form that can be solved using the simple case above.

How do we proceed? Writing
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and changing the variable in the simple integral from \; to
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using the simple case. We now have

This can be simplified further in two steps. First, if A has eigenvalues v; then
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and so
Thus

Then, we have

Thus

and collecting everything together we have,

1
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