L41: Lab 4 - The TCP State Machine

Dr Robert N. M. Watson Dr Graeme Jenkinson

Lent Term 2018

The goals of this lab are to:

e Use DTrace to investigate the actual TCP state machine and its interactions with the network stack

e Use DTrace and DUMMYNET to investigate the effects of latency on TCP state transitions

In this lab, we begin that investigation, which will be extended to include additional exploration of TCP bandwidth,
as affected by latency, in the following lab.

Background: Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is a near-universally used protocol that provides reliable, bi-directional,
ordered byte streams over the Internet Protocol (IP) between two communication endpoints. TCP connections are
built between a pair of IP addresses, identifying host network interfaces, and port numbers selected applications
(or automatically by the kernel) on either endpoint — collectively, a 4-fuple. While other models are possible,
typical TCP use has one side play the role of a ‘server’, which provides some network-reachable service on a
well-known port, and the other the ‘client’, building a connection to reach that service from an ephemeral port
randomly selected by the client TCP implementation.

The BSD (and now POSIX) sockets API offers a portable and simple interface for TCP/IP client and server
programming. The server opens a socket using the socket (2) system call, binds a well-known or previously
negotiated port number using bind (2), and performs 1isten (2) to begin accepting new connections, returned
as additional connected sockets from calls to accept (2). The client application similarly calls socket (2)
to open a socket, and connect (2) to connect to a target address and port number. Once open, both sides can
use system calls such as read (2), write (2), send(2), and recv (2) to send and receive data over the
connection. The close (2) system call both initiates a connection close (if not already closed) and releases the
socket — whose state may persist for some further period to allow data to drain and prevent premature re-use of the
4-tuple.

As discussed in lecture, TCP connections are implemented by a pair of state machine instances, one on each
communications endpoint. Once in the ESTABLISHED steady state, data passes in each direction via segments
that are acknowledged by packets passing in the other direction. The rate of data flow is controlled by TCP’s
Sflow-control and congestion-control mechanisms that respectively prevent the sender from sending more data than
the receiver or network can handle. Congestion control operates in three phases: slow start, in which use of
bandwidth is rapidly ramped up to exploit available network bandwidth either at the start of the connection or
following a timeout, and two tightly coupled phases of congestion avoidance and fast recovery as TCP discovers
and maintains a congestion window close to available fair bandwidth limit.

TCP identifies every byte in one direction of a connection via a sequence number. Data segments contain a
starting sequence number and length, describing the range of transmitted bytes. Acknowledgment packets contain
the sequence number of the byte that follows the last contiguous byte they are acknowledging. Acknowledgments
are piggybacked onto data segments traveling in the opposite direction to the greatest extent possible to avoid
additional packet transmissions. In slow start, TCP performance is directly limited by latency, as the congestion
window can be opened only by receiving ACKs — which require successive round trips. These periods are referred
to as latency bound for this reason, and network latency a critical factor in effective utilisation of path bandwidth.



The benchmark

Our IPC benchmark also supports a t cp_socket IPC type which requests use of TCP over the loopback interface
on port 10141. Use of a fixed port number makes it easy to identify and classify experimental packets on the
loopback interface using packet-sniffing tools such as t cpdump, and also via DTrace predicates. You are advised
to minimise network activity during the running of TCP-related benchmarks, and when using DTrace, to reduce
the degree of interference both from the perspective of analysing behaviour, and for reasons of the probe effect.

Compiling the benchmark

Labs 4 and 5 use the same IPC benchmark utilized in Labs 2 and 3. Follow the instructions present in those lab
assignments to build and use the IPC benchmark.

Running the benchmark

As before, you can run the benchmark using the ipc-static and ipc-dynamic commands, specifying vari-
ous benchmark parameters. For the purposes of this benchmark, we recommend the following configuration:

e Use ipc-static

e Use 2-thread mode

e Do not set the socket-buffer size flag
e Do not modify the total I/O size

Do ensure that, as in Labs 2 and 3, you have increased the kernel’s maximum socket-buffer size.

IPFW and DUMMYNET

To control latency for our experimental traffic, we will employ the IPFW firewall for packet classification, and
the DUMMYNET traffic-control facility to pass packets over simulated ‘pipes’. To configure two 1-way DUM-
MYNET pipes, each carrying a 10ms one-way latency, run the following commands as root:

ipfw pipe config 1 delay 10
ipfw pipe config 2 delay 10

During your experiments, you will wish to change the simulated latency to other values, which can be done by
reconfiguring the pipes. Do this by repeating the above two commands but with modified last parameters, which
specify one-way latencies in milliseconds (e.g., replace ‘10" with ‘5’ in both commands). The total Round-Trip
Time (RTT) is the sum of the two latencies — i.e., 10ms in each direction comes to a total of 20ms RTT. Note
that DUMMYNET is a simulation tool, and subject to limits on granularity and precision. Next, you must assign
traffic associated with the experiment, classified by its TCP port number and presence on the loopback interface
(100), to the pipes to inject latency:

ipfw add 1 pipe 1 tcp from any 10141 to any via 1lo0
ipfw add 2 pipe 2 tcp from any to any 10141 wvia 100

You should configure these firewall rules only once per boot.

Configuring the loopback MTU

Network interfaces have a configured Maximum Transmission Unit (MTU) — the size, in bytes, of the largest
packet that can be sent. For most Ethernet and Ethernet-like interfaces, the MTU is typically 1,500 bytes, although
larger ‘jumbograms’ can also be used in LAN environments. The loopback interface provides a simulated network
interface carrying traffic for loopback addresses such as 127.0.0.1 (Localhost), and typically uses a larger
(16K+) MTU. To allow our simulated results to more closely resemble LAN or WAN traffic, run the following
command as root to set the loopback-interface MTU to 1,500 bytes after each boot:

ifconfig 1o0 mtu 1500



Example benchmark command

This command instructs the IPC benchmark to perform a transfer over TCP in 2-thread mode:

ipc/ipc—static -v -1 tcp 2thread

DTrace probes for TCP

FreeBSD’s DTrace implementation contains a number of probes pertinent to TCP, which you may use in addition
to system-call and other probes you have employed in prior labs:

fbt::syncache_add:entry FBT probe when a SYN packet is received for a listening socket, which will lead to a
SYN cache entry being created. The third argument (args [2]) is a pointer to a struct tcphdr.

fbt::syncache_expand:entry FBT probe when a TCP packet converts a pending SYN cookie or SYN cache
connection into a full TCP connection. The third argument (args [2])isapointertoa struct tcphdr.

fbt::tcp_do_segment:entry FBT probe when a TCP packet is received in the ‘steady state’. The second argument
(args[1l])isapointertoa struct tcphdr thatdescribesthe TCP header (see RFC 893). You will want
to classify packets by port number to ensure that you are collecting data only from the flow of interest (port
10141), and associating collected data with the right direction of the flow. Do this by checking TCP header
fields th_sport (source port) and th_dport (destination port) in your DTrace predicate. In addition,
the fields th_seq (sequence number in transmit direction), th_ack (ACK sequence number in return
direction), and th_win (TCP advertised window) will be of interest. The fourth argument (args [3])isa
pointer to a struct tcpcb that describes the active connection.

fbt::tcp_state_change:entry FBT probe that fires when a TCP state transition takes place. The first argument
(args[0]) is a pointer to a struct tcpcb that describes the active connection. The tcpcb field
t_state is the previous state of the connection. Access to the connection’s port numbers at this probe
point can be achieved by following t _inpcb->inp_inc.inc_ie, which has fields ie_fport (foreign,
or remote port) and ie_lport (local port) for the connection. The second argument is the new state to be
assigned.

When analysing TCP states, the D array tcp_state_string can be used to convert an integer state to a
human-readable string (e.g., 0 to TCPS_CLOSED). For these probes, the port number will be in network byte
order; the D function ntohs () can be used to convert to host byte order when printing or matching values in
th_sport, th.dport, ie_lport, and ie_fport. Note that sequence and acknowledgment numbers are cast
to unsigned integers. When analysing and graphing data, be aware that sequence numbers can (and will) wrap due
to the 32-bit sequence space.

Sample DTrace scripts

The following script prints out, for each received TCP segment beyond the initial SYN handshake, the sequence
number, ACK number, and state of the TCP connection prior to full processing of the segment:

dtrace -n ’'fbt::tcp_do_segment:entry {
trace ((unsigned int)args[l]->th_seq);
trace((unsigned int)args[l]->th_ack);
trace (tcp_state_stringlargs[3]->t_state]);
} 14
Trace state transitions printing the receiving and sending port numbers for the connection experiencing the transi-

tion:

dtrace -n fbt::tcp_state_change:entry ' {
trace (ntohs (args[0]->t_inpcb->inp_inc.inc_ie.ie_lport));
trace (ntohs (args[0]->t_inpcb->inp_inc.inc_ie.ie_fport));



trace(tcp_state_stringlargs[0]->t_state]);
trace (tcp_state_stringlargs([1l]]);
}l

These scripts can be extended to match flows on port 10141 in either direction as needed.

Experimental questions (part 1)

These questions form the first part of your lab report spanning Labs 4 and 5. As described above, configure the IPC
benchmark to use TCP in 2thread mode. When exploring TCP state-machine behaviour, use whole-program
analysis. When exploring the effects of latency on performance, use only I/O-loop analysis. Employ the Graphviz
tool to plot state machines automatically from measurements captured using DTrace scripts.

1. Plot an effective (i.e., as measured) TCP state-transition diagram for the two directions of a single TCP
connection: states will be nodes, and transitions will be edges. Where state transitions diverge between the
two directions, be sure to label edges indicating ‘client’ vs. ‘server’.

2. Extend the diagram to indicate, for each edge, the TCP header flags of the received packet triggering the
transition, or the local system call (or other event — e.g., timer) that triggers the transition.

3. Compare the graphs you have drawn with the TCP state diagram in RFC 793.

4. Using DUMMYNET, explore the effects of simulated latency at Sms intervals between Oms and 40ms.
What observations can we make about state-machine transitions as latency increases?

Be sure, in your lab report, to describe any apparent simulation or probe effects.



