
Inductive families

February 2018

This time: Inductive families

Vec : Set → ℕ → Set

GADTs: difficulties

Simple types recap

0
1

𝐴 × 𝐵
𝐴 + 𝐵

Simple structure, so lots of “models”
(sets, relations, propositions, semirings)

GADT recap

GADTs are about type equalities.

type (_, _) eql = Refl : ('a,'a) eql

GADTs reveal things about types when you examine data.

let cast : type a b. (a, b) eql -> a -> b =
fun Refl x -> x

GADTs lead to rich types that can be viewed as propositions.

val max : ('a,'b,'c) max → 'a → 'b → 'c

GADT problems: existentials (or universals)

With GADTs, adding indexing requires existentials.

An existential type that hides the depth index:
type 'a edtree = E : ('a, _) dtree → 'a edtree

Constructing a depth-indexed tree from an unindexed tree:
let rec dify : 'a. 'a tree -> 'a edtree = function

Empty -> E EmptyD
| Tree (l, x, r) ->

let E l' = dify l in
let E r' = dify r in
E (TreeD (l', x, r', max_depth l' r'))

There’s no way to relate the depth index to the unindexed input.

GADT problems: singletons

With GADTs we need a shadow world of types for index values:

type z = Z : z
type 'n s = S : 'n → 'n s

let zero = Z;;
val zero : z = Z
let three = S (S (S Z));;
val three : z s s s = S (S (S Z))

GADT problems: relational programming

With GADTs we can talk about arguments, but not about results

What we mean:

𝑚𝑎𝑥(𝑚, 𝑛) ≡ 0
What we say:

('m, 'n, 'o) max

GADT problems: untyped indexes

With GADTs nothing prevents constructing meaningless types.

An inhabited type:

(* max(1,0) ≡ 1 *)
(z s, z, z s) max

An uninhabited type:

(* max(1,2) ≡ 0 *)
(z s, z s s, z) max

A meaningless type:

(* max(int ,string) ≡ float *)
(int , string , float) max

With inductive families (and dependent types generally)
things become much simpler…

Agda primer

Dependent functions and abbreviations
The dependent function space (Π) is written like this

(x ∶ A) → B

Implicit arguments:

∀ {x ∶ A} → B

For non-dependent functions (x not used in B), abbreviate:

A → B

If A can be inferred, abbreviate:

∀ x → B

Defining data
Simple data:

data Nat ∶ Set where
zero ∶ Nat
suc ∶ Nat → Nat

Parameterised data:

data Tree (α ∶ Set) ∶ Set where
Empty ∶ Tree α
Branch ∶ Tree α → α → Tree α → Tree α

Indexed data:

data DTree (α ∶ Set) ∶ Nat → Set where
Empty ∶ DTree α zero
Branch ∶ ∀ {x y ∶ Nat} → DTree α x → α → DTree α y →

DTree α (suc (max x y))

Defining functions

Functions are written in equational style:

max ∶ Nat → Nat → Nat
max zero r = r
max r zero = r
max (suc l) (suc r) = suc (max l r)

with clauses can compute with pattern variables on the left of =:

max2 ∶ Nat → Nat → Nat
max2 zero r = r
max2 r zero = r
max2 (suc l) (suc r) with max2 l r
... | m = suc m

Holes

Agda supports hole-driven development.
Idea: leave holes in programs; fill interactively with Agda’s help.

min ∶ Nat → Nat → Nat
min zero r = zero
min r zero = zero
min (suc l) (suc r) = {!!}

Goal: Nat

r : Nat
l : Nat

Benefits of rich types:
•∘ Clearly describe intent
•∘ Exclude incorrect programs
•∘ Generate faster code
•∘ Support interactive development (new!)

GADTs, improved

Indexing by terms: no more singletons

With GADTs we need a shadow world of types:

type z = Z : z and _ s = S : 'n → 'n s

let zero = Z;;
val zero : z = Z
let three = S (S (S Z));;
val three : z s s s = S (S (S Z))

With term-indexed types we can use simple data definitions:

data Nat ∶ Set where
zero ∶ Nat
suc ∶ Nat → Nat

Indexing by terms: no more relational programming
With GADTs type-level functions are written in relational style:

('m, 'n, 'o) max

With term-indexed types we can use simple functions:
max ∶ Nat → Nat → Nat
max zero r = r
max r zero = r
max (suc l) (suc r) = suc (max l r)

Indexing with max:

data DTree (α ∶ Set) ∶ Nat → Set where
Empty ∶ DTree α zero
Branch ∶ ∀ {x y ∶ Nat} → DTree α x → α → DTree α y →

DTree α (suc (max x y))

Indexing by terms: no more untyped indexes
With GADTs we can construct meaningless types
(because all indexes are in ★):

(* max(int ,string) ≡ float *)
(int , string , float) max

With inductive families, indexes are classified:

data Dtree (α ∶ Set) ∶ Nat → Set where

This is well-typed:

Dtree Nat (suc zero)

…but this is an error:

Dtree Nat Bool

Indexing by terms: no more existentials

GADTs require existentials to add indexing:

type 'a edtree = E : ('a, _) dtree → 'a edtree
let rec dify : 'a. 'a tree -> 'a edtree = …

Term-indexed result types can mention input terms:

dify ∶ ∀{α} → (t ∶ Tree α) → DTree α (depth t)
dify Empty = Empty
dify (Branch t x t1) = Branch (dify t) x (dify t1)

Beyond GADTs

Internal vs external verification

GADTs support internal verification by indexing data:

val top : ('a,'n) gtree → 'n

But indexing by every property is unwieldy and non-modular.
(Consider: how can we define a sorted gtree using gtree?)

Agda’s dependent types support external verification
— separating data and function definition from properties:

max−comm ∶ ∀ {m n} → (max m n) ≡ (max n m)

swiv−depth ∶ ∀ {α} → (t ∶ Tree α) → depth t ≡ depth (swivel′ t)

Large eliminations

Large eliminations are an alternative way of defining indexed data.
Idea: functions from data to types.
Defining perfect trees as an inductive family:

data GTree (α ∶ Set) ∶ Nat → Set where
Empty ∶ GTree α zero
TreeG ∶ ∀ {n} → GTree α n → α → GTree α n → GTree α (suc n)

Defining perfect trees via a recursive function:

gtree ∶ Set → Nat → Set
gtree α zero = ⊤
gtree α (suc n) = gtree α n × α × gtree α n

Example (n ≡ suc zero):
gtree α (suc zero) = gtree α zero × α × gtree α zero

= ⊤ × α × ⊤

Large eliminations, continued

Defining perfect trees via a recursive function:

gtree ∶ Set → Nat → Set
gtree α zero = ⊤
gtree α (suc n) = gtree α n × α × gtree α n

Program with gtree by pattern-matching on the index:

swivel ∶ ∀ {α n} → gtree α n → gtree α n
swivel {α} {zero} t = tt
swivel {α} {suc n} (l , x , r) = swivel r , (x , swivel l)

Equality

Pattern matching & equality

Exhaustiveness: does a pattern match cover every case?

For simple data types: well-understood, complete.
(ML pattern match compilation and partial evaluation

Sestoft, 1996)

For GADTs: impossible
(GADTs and Exhaustiveness: Looking for the Impossible
Garrigue & Le Normand, 2017)

For inductive families: even harder
(Dependent pattern matching and proof-relevant unification

Cockx, 2017)

Pattern matching & equality

Type equality (for GADTs):

First, expand aliases. Then types have form (t1, t2, … t𝑛) t.
(t1, t2, … t𝑛) t ≡ (s1, s2, … s𝑛) s iff t1 ≡ s1 ∧ … ∧ t ≡ s

Pattern matching exposes equalities, making types (un)equal.

Type equality with term indexing:

First, normalize terms. Terms equal if normalizations equal
(judgemental equality).
Pattern matching exposes equalities, allowing further
computation.
If we learn n ≡ zero (propositional equality), can reduce max n n

Normalization and consistency

Problem: without normalization we can build bogus proofs:
let rec f : type a b. (a, a) eql -> (a, b) eql =

fun Refl -> f Refl

OCaml supports general recursion:
val fix : (('a -> 'b) -> ('a -> 'b)) -> ('a -> 'b)
let rec fix f x = f (fix f) x

i.e. (under Curry-Howard correspondence):

∀𝐴∀𝐵.((𝐴 → 𝐵) → (𝐴 → 𝐵)) → (𝐴 → 𝐵)

Problem: determining equality involves normalizing terms
(may not terminate, may perform effects)

Next time: generic programming

val show : 'a → string

