
Chapter 7

First-class effects

7.1 Effects in OCaml

Most of the programs and functions we have considered so far are pure: they
turn parameters into results, leaving the world around them unchanged. How-
ever, most useful programs and many useful functions are not pure: they may
modify memory, write to or read from files, communicate over a network, raise
exceptions, and perform many other effects. Practical programming languages
must support some way of performing effects, and OCaml has support for writ-
ing impure functions in the form of language features for mutable memory, for
raising and handling exceptions and for various forms of I/O.

However, there are other useful effects besides those that are provided in
OCaml, including checked exceptions (as found in Java), continuations (as found
in Scheme), nondeterminism (as found in Prolog) and many more. How might
we write programs that make use of effects such as these without switching to
a different language?

One approach to programming with arbitrary effects is to introduce an inter-
face for describing computations — i.e. expressions that perform effects when
evaluated. Programming with computations will allow us to simulate arbitrary
effects, even those not provided by the language.

The role of let A reasonable starting point for building an interface for com-
putations is to look at how impure programs are written in OCaml. OCaml
provides a number of constructs and functions for performing effects — try and
raise for dealing with exceptions, ref, := and ! for programming with mu-
table state, and so on. However, in addition to these effect-specific operations,
every effectful program involves some kind of sequencing of effects. Since the
order of evaluation of expressions affects the order in which effects are performed
(and thus the observable behaviour of a program), it is crucial to have some way
of specifying that one expression should be evaluated before another.

For example, consider the following OCaml expression:

127

128 CHAPTER 7. FIRST-CLASS EFFECTS

f (g ()) (h ())

If the functions g and h have observable effects then the behaviour of the
program when the first argument g () is evaluated first is different from the
behaviour when the second argument h () is evaluated first. In OCaml the
order of evaluation of function arguments is unspecified1, so the behaviour of
the program in different environments may vary.

The order of evaluation of two OCaml expressions can be specified using let:
in the following expression e1 is always evaluated before e1:

let x = e1 in e2

To the other functions of let — local definitions, destructuring values, in-
troducing polymorphism, etc. — we may therefore add sequencing.

7.2 Monads

This sequencing behaviour of let can be captured using a monad. Monads have
their roots in abstract mathematics, but we will be treating them simply as a
general interface for describing computations.

7.2.1 The monad interface

The monad interface can be defined as an OCaml signature (Section 3.1.1):

module type MONAD =
sig

type ’a t
val return : ’a → ’a t
val (>>=) : ’a t → (’a → ’b t) → ’b t

end

The type t represents the type of computations. A value of type ’a t
represents a computation that performs some effects and then returns a result
of type ’a; it corresponds to an expression of type ’a in an impure language
such as OCaml.

The function return constructs trivial computations from values. A com-
putation built with return simply returns the value used to build the compu-
tation, much as some expressions in OCaml simply evaluate to a value without
performing any effects.

1In fact, many constructs in OCaml have unspecified evaluation order, and in some cases
the evaluation order differs across the different OCaml compilers. For example, here is a
program that prints "ocamlc" or "ocamlopt" according to which compiler is used:

let r = ref "ocamlc" in print_endline (snd ((r := "ocamlopt"), !r))

7.2. MONADS 129

The >>= operator (pronounced “bind”) combines computations. More pre-
cisely, >>= builds a computation by combining its left argument, which is a
computation, with its right argument, which is a function that builds a com-
putation. As the type suggests, the result of the first argument is passed to
the second argument; the resulting computation performs the effects of both
arguments. The >>= operator sequences computations, much as let sequences
the evaluation of expressions in an impure language.

Here is an OCaml expression that sequences the expressions e1 and e2,
binding the result of e1 to the name x so that it can be used in e2:

let x = e1 in e2

And here is an analogous computation written using a monad:

e1 >>= fun x → e2

7.2.2 The monad laws

In order to be considered a monad, an implementation of the MONAD signature
must satisfy three laws. The first law says that return is a kind of left unit
for >>=:

return v >>= k ≡ k v

The second law says that return is a kind of right unit for >>=:

m >>= return ≡ m

The third law says that bind is associative.

(m >>= f) >>= g ≡ m >>= (fun x → f x >>= g)

The higher-order nature of >>= makes these laws a little difficult to read and
remember. If we translate them into the analogous OCaml expressions things
become easier. The first law (a β rule for let) then says that instead of using
let to bind a value we can substitute the value in the body:

let x = v in e ≡ e[x:=v]

The second law (an η rule for let) says that a let binding whose body is simply
the bound variable can be simplified to the right-hand side:

let x = e in x ≡ e

The third law (a commuting conversion for let) says that nested let bindings
can be unnested:

let x = (let y = e1 in e2) in e3

≡
let y = e1 in let x = e2 in e3

(assuming that y does not appear in e3.)

130 CHAPTER 7. FIRST-CLASS EFFECTS

Top-level functions for MONAD Since there are many different instances of
the MONAD interface, it is convenient to define top-level functions that take an
implicit MONAD argument:

let return {M:MONAD} x = M.return x
let (>>=) {M:MONAD} m k = M.(>>=) m k

Using these functions we can write code that works for any instance of MONAD.

7.2.3 Example: a state monad

The monad interface is not especially useful by itself, but we can make it more
useful by adding operations that perform particular effects. Here is an interface
STATE that extends MONAD with operations for reading and updating a single
reference cell:

module type STATE =
sig

type state
type ’a t
module Monad : MONAD with type ’a t = ’a t
val get : state t
val put : state → unit t
val runState : ’a t → state → state * ’a

end

To the type and operations of MONAD, STATE adds a type state denoting
the type of the cell, and operations get and put for reading and updating the
cell. The types of get and put suggest how they behave: get is a computation
without parameters that returns a result of type state — that is, the contents
of the cell; put is a computation which is parameterised by a state value
with which it updates the cell, and which returns unit. Since the type t of
computations is an abstract type we also add a destructor function runState
to allow us to run computations. The runState function is parameterised by
the initial state and it returns both the final state and the result of running the
computation.

The following implicit instance converts STATE instances to MONAD in-
stances, making it possible to use the top-level return and >>= functions with
instances of STATE:

implicit module Monad_of_state{S:STATE} = S.Monad

It’s useful to define a similar implicit instance each time we define a new
extension of MONAD, but we won’t write out the instances every time.

The STATE interface makes it possible to express a variety of computations.
For example, here is a simple computation that retrieves the value of the cell
and then stores an incremented value:

get >>= fun s →
put (s + 1)

7.2. MONADS 131

We might write an analogous program using OCaml’s built-in reference type
as follows:

let s = !r in
r := (s + 1)

This example shows how to use the state monad. How might we implement
STATE? As we shall see, the primary consideration is to find a suitable definition
for the type t; once t is defined the definitions of the other members of the
interface typically follow straightforwardly. The type of runState suggests a
definition: a STATE computation may be implemented as a function from an
initial state to a final state and a result:

type ’a t = state → state * ’a

Then return is a function whose initial and final states are the same:

val return : ’a → ’a t
let return v s = (s, v)

and >>= is a function that uses the final state s’ of its first argument as the
initial state of its second argument:

val (>>=) : ’a t → (’a → ’b t) → ’b t
let (>>=) m k s = let (s’, a) = m s in k a s’

The get and put functions are even simpler. We can define get as a function
that leaves the state unmodified, and also returns it as the result:

val get : state t
let get s = (s, s)

and put as a function that ignores the initial state, replacing it with the value
supplied as an argument:

val put : state → unit t
let put s’ _ = (s’, ())

Here is a complete definition for an implementation of STATE. We define it
as a functor (Section 4.1.2) so that we can abstract over the state type:

module State (S : sig type t end) = struct
type state = S.t
type ’a t = state → state * ’a
module Monad = struct

type ’a t = state → state * ’a
let return v s = (s, v)
let (>>=) m k s = let s’, a = m s in k a s’

end
let get s = (s, s)
let put s’ _ = (s’, ())
let runState m init = m init

end

132 CHAPTER 7. FIRST-CLASS EFFECTS

7.2.4 Example: fresh names

How might we use State to write an effectful function? Let’s build a function
that traverses trees, replacing the label at each branch with a fresh name. Here
is our definition of a tree type:

type ’a tree = Empty : ’a tree
| Tree : ’a tree * ’a * ’a tree → ’a tree

In order to use the State monad we must instantiate it with a particular
state type. We’ll use int, since a single int cell is sufficient to support the
fresh name generation effect

implicit module IState = State (struct type t = int end)

We can define the fresh_name operation as a computation returning a
string in the IState monad:

let fresh_name : string IState.t =
get >>= fun i →
put (i + 1) >>= fun () →
return (Printf.sprintf "x%d" i)

The fresh_name computation reads the current value i of the state using
get, then uses put to increment the state before returning a string constructed
from i.

The final piece needed for the example is a function that traverses trees,
applying an effectful (monadic) function to each label. The mapMTree function
is parameterized by a monad instance M, a function f and a tree t:

let rec mapMTree:{M:MONAD}→ (’a→ ’bM.t)→ ’a tree→ ’b treeM.t
= fun {M:MONAD} f t → match t with

| Empty → return Empty
| Tree (l, v, r) → mapMTree f l >>= fun l’ →

f v >>= fun v’ →
mapMTree f r >>= fun r’ →
return (Tree (l’, v’, r’))

If the tree is Empty, there is no work to do and the result is a computation that
simply returns Empty. If the tree is a Tree node then mapMTree traverses the
left tree (binding the result to l’), applies f to the label (binding the result to
v’), traverses the right tree (binding the result to r’, and then returns a Tree
built from the results of these three computations.

Using mapMTree and fresh_name we can define a function label_tree
that traverses a tree, replacing each label with a fresh name:

let label_tree t = mapMTree (fun _ → fresh_name) t

7.2. MONADS 133

It is instructive to see what happens when we inline the definitions of the
type and operations of the IState monad: get, put, >>= and return. After
reducing the resulting applications we are left with the following:

let rec mapMTree’ : ’a.’a tree → int → int * string tree =
function
Empty → (fun s → (s,Empty))

| Tree (l, v, r) →
fun s0 →
let (s1, l) = mapMTree’ l s0 in
let (s2, n) = fresh_name s1 in
let (s3, r) = mapMTree’ r s2 in
(s3, Tree (l, n, r))

Exposing the plumbing in this way allows us to see how computations in the
state monad are executed. Each computation — mapMTree’ l, fresh_name
s1 etc. — is a function that receives the current value of the state and that

returns a pair of the updated state along with a result. We could, of course,
have written the code in this state-passing style in the first place instead of
using monads, but passing state explicitly has a number of disadvantages: it is
easy to inadvertently pass the wrong state value to a sub-computation, and it
is hard to change the program to incorporate other effects.

7.2.5 Example: an exception monad

Let’s consider a second extension of the MONAD interface that adds operations
for raising and handling exceptions:

module type ERROR = sig
type error
type ’a t
module Monad : MONAD with type ’a t = ’a t
val raise : error → ’a t
val _try_ : ’a t → (error → ’a) → ’a

end

The ERROR signature extends MONAD with a type error of exceptions and
two operations. The first operation, raise, is parameterised by an exception
and builds a computation that does not return a result, as indicated by the
polymorphic result type. The second operation, _try_, is a destructor for
computations that can raise exceptions. We might write

try c
(fun exn → e’)

to run the computation c, returning either the result of c or, if c raises an
exception, the result of evaluating e’ with exn bound to the raised exception.

How might we implement ERROR? As before, we begin with the definition of
the type t. There are two possible outcomes of running an ERROR computation,

134 CHAPTER 7. FIRST-CLASS EFFECTS

so we define t as a variant type with a constructor for representing a compu-
tation that returns a value and a constructor for representation a computation
that raises an exception:

type ’a t = Val : ’a → ’a t
| Exn : error → ’a t

It is then straightforward to define an implementation of Error. As with
State, we define Error as a functor to support parameterisation by the ex-
ception type:

module Error (E: sig type t end) = struct
type error = E.t
module Monad = struct

type ’a t =
Val : ’a → ’a t

| Exn : error → ’a t
let return v = Val v
let (>>=) m k =

match m with
| Val v → k v
| Exn e → Exn e

end
let raise e = Exn e
let _try_ m catch =

match m with
| Val v → v
| Exn e → catch e

end

The implementations of return and raise are straightforward: return
constructs a computation that returns a value, while raise constructs a com-
putation that raises an exception. The behaviour of >>= depends on its first
argument. If the first argument is a computation that returns a value then
that value is passed to the second argument and the computation continues. If,
however, the first argument is a computation that raises an exception then the
result of >>= is the same computation. That is, the first exception raised by
a computation in the error monad aborts the whole computation. The _try_
function runs a computation in the error monad, either returning the value or
passing the raised exception to the argument function catch as appropriate.

Like the state monad, the error monad makes it possible to express a wide
variety of computations. For example, we can write an analogue of the find
function from the standard OCaml List module. The find function searches
a list for the first element that matches a user-supplied predicate. Here is a
definition of find:

let rec find p = function
| []→ raise Not_found
| x :: _ when p x→ x
| _ :: xs→ find p xs

7.3. MONADS AND HIGHER-ORDER EFFECTS 135

If no element in the list matches the predicate then find raises the exception
Not_found. Here is the type of find:

val find : (’a → bool) → ’a list → ’a

We might read the type as follows: find accepts a function of type ’a →
bool and a list with element type ’a, and if it returns a value, returns a value
of type ’a. There is nothing in the type that mentions that find can raise
Not_found, since the OCaml type system does not distinguish functions that
may raise exceptions from functions that always return successfully.

In order to implement an analogue of find using the ERROR interface we
must first instantiate the functor, specifying the error type:

module Error_exn = Error(struct type t = exn end)

We can then implement the function as a computation in the Error_exn
monad:

let rec findE p = Error_exn.(function
[]→ raise Not_found

| x :: _ when p x→ return x
| _ :: xs→ findE p xs)

The definition of findE is similar to the definition of find, but there is one
difference: since findE builds a computation in a monad, we must use return
to return a value.

Here is the type of findE:

val findE : (’a → bool) → ’a list → ’a Error_exn.t

The type tells us that findE accepts a function of type ’a → bool and
a list with element type ’a, just like find. However, the return type is a
little more informative: it tells us that findE builds a computation in the
Error_exn monad that when run will either raise an exception or return a
value of type ’a.

7.3 Monads and higher-order effects

The examples of monadic computations that we’ve seen so far have been fairly
simple. However, the higher-order nature of the >>= operator makes the monad
interface powerful enough to express a wide variety of computations.

Like OCaml’s built-in effects, monadic effects are dynamic, in the sense that
the result of one computation can be used to build subsequent computations.
For example, here is a fragment of OCaml that calls a (presumably effectful)
function f and passes the result to a second function g:

let x = f () in
let y = g x in

. . .

136 CHAPTER 7. FIRST-CLASS EFFECTS

and here is an analogous computation written using monads:

f >>= fun x →
g x >>= fun y →

. . .

This is a kind of first-order dynamic dependence, in which results from one
computation appear as parameters to another. A second form of dynamic de-
pendence allows the computations themselves, not just their parameters, to be
determined by earlier computations. Here is a second OCaml fragment which
defines a function uncurry that converts a curried function into a function on
pairs:

let uncurry f (x,y) =
let g = f x in
let h = g y in
h

and here is an analogous computation written using monads:

let uncurryM f (x, y) =
f x >>= fun g →
g y >>= fun h →

return h

In both cases the function g used for the second subcomputation is computed
by f x.

It is clear that the monad interface offers a great deal of flexibility to the
user. However, by the same token it demands a great deal from the implementer.
As we shall see, there are situations where monads are too powerful, and both
user and implementer are better served by a more restrictive interface.

7.4 Applicatives

Applicatives2 offer a second interface to effectful computation that is less pow-
erful and therefore, from a certain perspective, more general than monads.

7.4.1 Computations without dependencies

As we have seen, computations constructed using the MONAD interface corre-
spond to the sort of computations that we can write with let . . . in in OCaml
(Section 7.1). Like let, the monadic >>= operation both sequences computa-
tions and makes the result of one computation available for constructing other
computations (Section 7.3). However, let . . . in is not always the most appro-
priate construct for combining computations in OCaml. In particular, if there

2The full name for “applicative” is for “applicative functor”, but we’ll stick with the shorter
name. Several of the papers in the further reading section (page 152) use the name “idioms”
under which applicatives were originally introduced.

7.4. APPLICATIVES 137

are no dependencies between two expressions e1 and e2 then it is sometimes
more appropriate to use the less-powerful construct let . . . and. For example,
when reading the following OCaml fragment the reader might wonder where the
variable b on the second line is bound. Since the variables introduced by first
line are in scope in the second line the reader must scan both the first line and
the surrounding environment to find the nearest binding for b.

let x = f a in
let y = g b in

. . .

Since the variable x bound by the first line is not used in the second line the
code can be rewritten to use the less-powerful binding construct let . . . and3:

let x = f a
and y = g b
in . . .

Now it is immediately clear that none of the variables bound with let are used
before the in on the last line, easing the cognitive burden on the reader.

7.4.2 The applicative interface

As we have seen, there is a correspondence between computations that use the
MONAD interface and programs written using let . . . in. The APPLICATIVE
interface captures computations that have no interdependencies between them,
in the spirit of let . . . and.

Here is the interface for applicatives:

module type APPLICATIVE =
sig

type ’a t
val pure : ’a → ’a t
val (<∗>) : (’a → ’b) t → ’a t → ’b t

end

Comparing APPLICATIVE with MONAD (Section 7.2.1) reveals a number
of minor differences — the operations are called pure and <∗> (pronounced
“apply”) rather than return and >>=, and the function argument to <∗>
comes first rather than second — and one significant difference. Here is the
type of >>=:

’a t → (’a → ’b t) → ’b t

3Unfortunately the OCaml definition leaves the evaluation order of expressions bound with
let . . . and unspecified, so we must also consider whether we are happy for the two lines to
be executed in either order. This is rather an OCaml-specific quirk, though, and does not
affect the thrust of the argument, which is about scope, not evaluation order.

138 CHAPTER 7. FIRST-CLASS EFFECTS

and here is the type of <∗>, with the order of arguments switched to ease
comparison:

’a t → (’a → ’b) t → ’b t

As the types show, the arguments to >>= are a computation and a function
that constructs a computation, allowing >>= to pass the result of the computa-
tion as argument to the function. In contrast, the arguments to <∗> are two
computations, so <∗> cannot pass the result of one computation to the other.
The different types of >>= and <∗> result in a significant difference in power
between monads and applicatives, as we shall see.

7.4.3 Applicative normal forms

There are typically many ways to write any particular computation. For exam-
ple, if we would like to call three functions f, g and h, and collect the results
in a tuple then we might write either of the following equivalent programs:

let (x, y) =
let x = f ()
and y = g () in

(x, y)
and z = h ()
in (x, y, z)

let x = f ()
and (y, z) =

let y = g ()
and z = h ()

in (x, y, z)

In this case it is fairly easy to see that the programs are equivalent. For
situations where determining equivalence is not so easy it is useful to have
a way of translating programs into a normal form — that is, a syntactically
restricted form into which we can rewrite programs using the equations of the
language. If we have a normal form then checking equivalence of two programs is
a simple matter of translating them both into the normal form then comparing
the results for syntactic equivalence.

For programs written with let . . . and we might use a normal form that is
free from nested let. We can rewrite both the above programs into the following
form:

let x = f ()
and y = g ()
and z = h ()
in (x, y, z)

Applicative computations also have a normal form. Every applicative com-
putation is equivalent to some computation of the following form:

pure f <∗> c1 <∗> c2 <∗> . . . <∗> cn

where c1,c2, . . . ,cn are primitive computations that do not involve the com-
putation constructors pure and <∗>.

7.4. APPLICATIVES 139

7.4.4 The applicative laws and normalization

There are four laws (equations) that implementations of APPLICATIVE must
satisfy. These four laws are sufficient to rewrite any applicative computation
into the normal form of Section 7.4.3.

The first applicative law says that pure is a homomorphism for application.

pure (f v) ≡ pure f <∗> pure v

The second law says that a lifted identity function is a left unit for applicative
application.

u ≡ pure id <∗> u

The third law says that nested applications can be flattened using a lifted com-
position operation.

u <∗> (v <∗> w) ≡ pure compose <∗> u <∗> v <∗> w

(Here compose is defined as fun f g x → f (g x).) The fourth law says
that pure computations can be moved to the left or right of other computations.

v <∗> pure x ≡ pure (fun f → f x) <∗> v

In summary, the laws make it possible to introduce and eliminate pure com-
putations, and to flatten nested computations, allowing every computation to be
rearranged into the normal form of Section 7.4.3, which consists of an unnested
application with a single occurrence of pure.

Let’s look at an example. The following computation is not in normal form,
since there are two uses of pure, and a nested <∗>:

pure (fun (x,y) z → (x, y, z))
<∗> (pure (fun x y → (x, y)) <∗> f <∗> g)
<∗> h

We can flatten the nested applications a little by using the third applicative
law:

pure compose
<∗> pure (fun (x,y) z → (x, y, z))
<∗> (pure (fun x y → (x, y)) <∗> f)
<∗> g
<∗> h

The adjacent pure computations can be coalesced using the first law:

pure (compose (fun (x,y) z → (x, y, z)))
<∗> (pure (fun x y → (x, y)) <∗> f)
<∗> g
<∗> h

140 CHAPTER 7. FIRST-CLASS EFFECTS

The remaining nested application can be flattened using the third law:

pure compose
<∗> pure (compose (fun (x,y) z → (x, y, z)))
<∗> pure (fun x y → (x, y))
<∗> f
<∗> g
<∗> h

We now have three adjacent pure computations that can be combined using
the first law:

pure ((compose (compose (fun (x,y) z → (x, y, z)))) (fun x y →
(x, y)))

<∗> f
<∗> g
<∗> h

Expanding the definition of compose and beta-reducing gives us the follow-
ing normal form term:

pure (fun x y z → (x, y, z))
<∗> f
<∗> g
<∗> h

7.4.5 Applicatives and monads

There is a close relationship between applicatives and monads, which can be
expressed as a functor:

implicit module Applicative_of_monad {M:MONAD} :
APPLICATIVE with type ’a t = ’a M.t =

struct
type ’a t = ’a M.t
let pure = M.return
let (<∗>) f p =

M.(f >>= fun g →
p >>= fun q →
return (g q))

end

The Applicative_of_monad functor builds an implementation of the
APPLICATIVE interface from an implementation of the MONAD interface, pre-
serving the definition of the type t. The definition of pure is trivial; all the
interest is in the definition of <∗>, which is defined in terms of both >>= and
return. First >>= extracts the results from the two computations which are
arguments to <∗>; next, these results are combined by applying the first result

7.4. APPLICATIVES 141

to the second result; finally, return turns the result of the application back
into a computation. We might consider this definition of <∗> in terms of >>=
as analogous to the way that computations written using let . . . and can be
written using let . . . in. For example, we might rewrite the following program

let g = f
and q = p

g q

as follows:

let g = f in
let q = p in
g q

(provided g does not appear in p, which we can always ensure by renaming the
variable).

The Applicative_of_monad functor shows how we might rewrite compu-
tations which use the applicative operations as computations written in terms of
return and >>=. For example, here is the normalised applicative computation
from Section 7.4.4:

pure (fun x y z → (x, y, z)) <∗> f <∗> g <∗> h

Substituting in the definitions of pure and<∗> from Applicative_of_monad
gives us the following monadic computation:

((return (fun x y z → (x, y, z)) >>= fun u →
f >>= fun v →
return (u v)) >>= fun w →
g >>= fun x →
return (w x)) >>= fun y →

h >>= fun z →
return (y z)

This is not as readable as it might be, but we can use the monad laws
to reassociate the >>= operations and eliminate the multiple uses of return,
resulting in the following term:

f >>= fun e →
g >>= fun x →
h >>= fun z →
return (e, x, z)

7.4.6 Example: the state applicative

As we have seen, we can use the Applicative_of_monad functor to turn
applicative computations into monadic computations. Viewing things from the
other side, we can also use Applicative_of_monad to turn implementations
of MONAD into implementations of APPLICATIVE. For example, we can build
an applicative from the State monad:

142 CHAPTER 7. FIRST-CLASS EFFECTS

module StateA(S : sig type t end) :
sig

type state = S.t
type ’a t
module Applicative : APPLICATIVE with type ’a t = ’a t
val get : state t
val put : state → unit t
val runState : ’a t → state → state * ’a

end =
struct

type state = S.t
module StateM = State(S)
type ’a t = ’a StateM.t
module Applicative =

Applicative_of_monad{StateM.Monad}
let (get, put, runState) = StateM.(get, put, runState)

end

Besides the monad type and operations we must transport the additional
elements — the state type and the operations (get, put and runState) —
to the new interface.

7.4.7 Example: fresh names

We have converted the State monad to an corresponding applicative (Sec-
tion 7.4.6). Can we write an applicative analogue to the label_tree function
of Section 7.2.4?

Unfortunately, the applicative interface is not powerful enough to write a
computation that behaves like label_tree. In fact, we cannot even write the
operation fresh_name. Here is the definition of fresh_name again:

let fresh_name : string IState.t =
get >>= fun i →
put (i + 1) >>= fun () →
return (Printf.sprintf "x%d" i)

The crucial difficulty is the use of the result i of the computation get in
constructing the parameter to put. It is precisely this kind of dependency that
the monadic >>= supports and the applicative <∗> does not.

Instead of defining a fresh name computation using primitive computations
get and put, we must make fresh_name itself a primitive computation in the
applicative, where we have the full power of the underlying monad available:

7.4. APPLICATIVES 143

module NameA :
sig

type ’a t
module Applicative : APPLICATIVE with type ’a t = ’a t
val fresh_name : string t
val run : ’a t → ’a

end =
struct

module M = State(struct type t = int end)
type ’a t = ’a M.t
module Applicative Applicative_of_monad(M)
let fresh_name = M.(
get >>= fun i →
put (i + 1) >>= fun () →
return (Printf.sprintf "x%d" i))

let run a = let _, v = M.runState a ˜init:0 in v
end

As with the monadic mapMTree, it is also useful to have a general applicative
traversal over trees:

let rec mapATree:{A:APPLICATIVE}→ (’a→ ’bA.t)→ ’a tree→
’b treeA.t

= fun {A:APPLICATIVE} f t → match t with
| Empty → pure Empty
| Tree (l, v, r) → pure (fun l’ v’ r’ → Tree (l’, v’, r’))

<*> mapATree f l
<*> f v
<*> mapATree f r

Comparing this definition with the monadic implementation of Section 7.2.4
reveals a difference in style. While the monadic version has an imperative feel,
with the result of each computation bound in sequence, the applicative version
retains the functional programming style, with a single pure function on the left
of the computation applied to a colllection of arguments.

An applicative version of label_free may be defined using mapATree
along with the fresh_name effect:

let label_tree t = mapATree (fun _ → fresh_name) t

7.4.8 Composing applicatives

Section 7.4.5 shows how we can build applicative implementations from monad
implementations. Another easy way to obtain new applicative implementations
is to compose two existing applicatives. Unlike monads (Exercise 5), the compo-
sition of any two applicatives produces a new applicative implementation. We
can define the composition as a functor:

144 CHAPTER 7. FIRST-CLASS EFFECTS

module Compose (F : APPLICATIVE)
(G : APPLICATIVE) :

APPLICATIVE with type ’a t = ’a G.t F.t =
struct

type ’a t = ’a G.t F.t
let pure x = F.pure (G.pure x)
let (<∗>) f x = F.(pure G.(<∗>) <∗> f <∗> x)

end

The type of the result of the Compose functor is built by composing the type
constructors of the input applicatives F and G. Similarly, pure is defined as
the composition of F.pure and G.pure. The definition of <∗> is only slightly
more involved. First, G’s <∗> function is lifted into the result applicative by
applying F.pure. Second, this lifted function is applied to the arguments f
and x using F’s <∗>. It is not difficult to verify that the result satisfies the
applicative laws so long as F and G do (Exercise 7).

7.4.9 Example: the dual applicative

As we have seen (p137), OCaml’s let . . . and construct leaves the order of
evaluation of the bound expressions unspecified. This underspecification is pos-
sible because of the lack of dependencies between the expressions; if an expres-
sion e2 uses the value of another expression e1, then it is clear that e1 must be
evaluated before e2 in an eager language such as OCaml.

The applicative interface, which offers no way for one computation to depend
upon the result of another, suggests a similar freedom in the order in which
computations are executed. However, unlike OCaml’s let . . . and construct,
applicative implementations typically fix the execution order — for example,
the state applicative of Section 7.4.6 is based on the Applicative_of_monad
functor (Section 7.4.5), whose implementation of <∗> always executes the first
operand before the second.

Although individual applicative implementations do not typically underspec-
ify evaluation order, it is still possible to take advantage of the lack of dependen-
cies between computations to vary the order. The following functor converts an
applicative implementation into a dual applicative implementation that executes
computations in the reverse order.

module Dual_applicative (A: APPLICATIVE)
: APPLICATIVE with type ’a t = ’a A.t =

struct
type ’a t = ’a A.t
let pure = A.pure
let (<∗>) f x =
A.(pure (|>) <∗> x <∗> f)

end

The Dual_applicative functor leaves the argument type A.t unchanged,
since computations in the output applicative perform the same types of effect

7.4. APPLICATIVES 145

as computations in the input applicative. The pure function is also unchanged,
since changing the order of effects makes no difference for pure computations. All
of the interest is in the <∗> function, which reverses the order of its arguments
and uses pure (|>) to reassemble the results in the appropriate order. (The
|> operator performs reverse application, and behaves like the expression fun
y g → g y.)

It is straightforward to verify that the applicative laws hold for the result
Dual_applicative(A) if they hold for the argument applicative A (Exer-
cise 3).

We can use the Dual_applicative to convert NameA into an applicative
that runs its effects in reverse:

module NameA’ :
sig

module Applicative : APPLICATIVE
val fresh_name : string t
val run : ’a t → ’a

end =
struct

module Applicative = Dual_applicative(NameA)
let (fresh_name, run) = NameA.(fresh_name, run)

end

As we saw when applying the Applicative_of_monad functor in Sec-
tion 7.4.6, we must manually transport the fresh_name and run functions to
the new applicative.

Here is an example of the behaviour of NameA and NameA’ on a small
computation:

NameA.(run (pure (fun x y → (x, y)) <∗> fresh_name <∗>
fresh_name));;

- : string * string = ("x0", "x1")
NameA’.(run (pure (fun x y → (x, y)) <∗> fresh_name <∗>

fresh_name));;
- : string * string = ("x1", "x0")

7.4.10 Example: the phantom monoid applicative

We saw in Section 7.4.5 that we can build an implementation of APPLICATIVE
from a MONAD instance using the Applicative_of_monad functor. We have
also seen that the two interfaces are not strictly equivalent, since there are
some computations, such as fresh_name which can be defined using MONAD
(Section 7.2.4), but not using APPLICATIVE (Section 7.4.7). Are there, then,
any implementations of APPLICATIVE which do not correspond to any MONAD
implementation?

Here is one such example. The Phantom_counter module represents com-
putations which track the number of times a primitive effect count is invoked.
(Exercise 1 involves writing a computation using Phantom_counter.)

146 CHAPTER 7. FIRST-CLASS EFFECTS

module Phantom_counter :
sig

type ’a t = int
module Applicative : APPLICATIVE with type ’a t = ’a t
val count : ’a t
val run : ’a t → int

end
=

struct
type ’a t = int
module Applicative = struct

type ’a t = int
let pure _ = 0
let (<∗>) = (+)

end
let count = 1
let run c = c

end

As the type shows, Phantom_counter implements the APPLICATIVE in-
terface. However, it is not possible to use the Phantom_counter type to
implement MONAD. The difficulty comes when trying to write >>=. Since a
value of type ’a Phantom_counter.t does not actually contain an ’a value
(that is, the ’a is “phantom” in the same sense as the type parameter in the
phantom types discussed in Section 3.1.4), there is no way to extract a result
from the first operand of >>= to pass to the second operand. The monad inter-
face promises more than Phantom_counter is able to offer.

In fact, Phantom_counter is one of a family of non-monadic applicatives
parameterised by a monoid. The monoid interface contains a type t together
with constructors zero and ++:

module type MONOID =
sig

type t
val zero : t
val (++) : t → t → t

end

We can generalize the definition of Phantom_counter to arbitrary monoids
by turning the module into a functor parameterised by MONOID:

module Phantom_monoid_applicative (M: MONOID)
: APPLICATIVE with type ’a t = M.t =

struct
type ’a t = M.t
let pure _ = M.zero
let (<∗>) = M.(++)

end

We’ll return to monoids in more detail in Section 7.5.

7.5. MONOIDS 147

7.4.11 Applicatives and monads: interfaces and imple-
mentations

Figures 7.1 and 7.2 summarise the relationship between applicatives and mon-
ads.

computations

<∗>
>>=

Figure 7.1: Monadic computations
include applicative computations

implementations

>>=

<∗>

Figure 7.2: Applicative implementa-
tions include monadic implementations

Figure 7.1 is about computations such as mapMTree f t and fresh_name
. As we have seen (Section 7.4.5), every computation which can be expressed
using APPLICATIVE can also be expressed using MONAD. Furthermore, there
are some computations that can be expressed using MONAD that cannot be
expressed using APPLICATIVE (Section 7.4.7).

Figure 7.2 is about implementations such as State and Error. As we have
seen (Section 7.4.5), for every implementation of MONAD there is a correspond-
ing implementation of APPLICATIVE. Furthermore, there are some implemen-
tations of APPLICATIVE which do not correspond to any implementation of
MONAD (Section 7.4.10).

These inclusion relationships can serve as a guideline for deciding when to use
applicatives and when to use monads. When writing computations you should
prefer applicatives where possible, since applicatives give the implementer more
freedom. On the other hand, when writing implementations you should expose
a monadic interface where possible, since monads give the user more power.

7.5 Monoids

We have seen that applicatives offer a less powerful interface to computation
than monads. A less powerful interface gives more freedom to the implementer,
so it is possible to optimise applicative computations in ways that are not possi-
ble for computations written with monads. The question naturally arises, then,
whether there are interfaces to effectful computation that are even less powerful
than applicatives.

148 CHAPTER 7. FIRST-CLASS EFFECTS

Monoids offer one such interface. Here is the monoid interface, which we
first saw in Section 7.4.10:

module type MONOID =
sig

type t
val zero : t
val (++) : t → t → t

end

The MONOID interface corresponds approximately to APPLICATIVE with
the type parameter removed. There are two constructors: zero, which builds
a computation with no effects, and ++, which builds a computation from two
computations. As with applicatives, there is a normal form which contains no
nesting, allowing each monoid computation to be rearranged into the following
shape:

zero ++ m1 ++ m2 ++ . . . ++ mn

There are three laws, which say that ++ is associative and that zero is a
left and right unit for ++:

m ++ (n ++ o) ≡ (m ++ n) ++ o
m ++ zero ≡ m
zero ++ m ≡ m

Many familiar data types can be given MONOID implementations, often in
several different ways. For example, lists form a monoid, taking the empty list
for zero and concatenation for ++, and integers form a monoid under either
addition or multiplication.

Interpreted as computations, monoids correspond to impure expressions
which do not return a useful value. In OCaml we can sequence such expressions
using the semicolon:

m;
n;
o;
()

Finally, we have seen how to build an implementation of APPLICATIVE from
an implementation of MONOID. It is also possible to build an implementation
of MONOID from an instance of APPLICATIVE (Exercise 13.)

7.6 Exercises

1. [H] Use mapATree together with Phantom_counter (Section 7.4.10) to
build a computation that counts the number of nodes in a tree.

2. [HH] Write a module with the signature

7.6. EXERCISES 149

MONAD with type ’a t = ’a list

and with the following behaviour (demonstrated in the OCaml top-level):

[1;2;3] >>= fun x →
["a";"b";"c"] >>= fun y →
return (x, y);;

- : (int * string) ListM.t =
[(1, "a"); (1, "b"); (1, "c");
(2, "a"); (2, "b"); (2, "c");
(3, "a"); (3, "b"); (3, "c")]

(Hint : start by working out what types return and >>= should have if
’a t is defined as ’a list.)

3. [HH] Show that if A is an applicative implementation satisfying the ap-
plicative laws then Dual_applicative(A) is also an applicative imple-
mentation satisfying the applicative laws.

4. [HH] Show that if M is a monad implementation satisfying the monad
laws then Applicative_of_monad(M) is an applicative implementa-
tion satisfying the applicative laws.

5. [HH] The Compose functor of Section 7.4.8 builds an applicative by com-
posing two arbitrary applicatives. Show that there is no analogous functor
that builds a monad by composing two arbitrary monads.

6. [HHH] The normal form for applicatives (Section 7.4.3) can be defined as
an OCaml data type:

type _ t =
Pure : ’a → ’a t

| Apply : (’a → ’b) t * ’a A.t → ’b t

where A is a module implementing the APPLICATIVE interface. Using this
definition it is possible to define a functor Normal_applicative that
turns any implementation of APPLICATIVE into a second APPLICATIVE
implementation that constructs computations in normal form. Complete
the implementation of Normal_applicative, including the functions
lift and observe that convert between the normalised representation
and the underlying applicative:

150 CHAPTER 7. FIRST-CLASS EFFECTS

module Normal_applicative(A: APPLICATIVE) :
sig

type ’a t
module Applicative : APPLICATIVE with type ’a t = ’a t
val lift : ’a A.t → ’a t
val observe : ’a t → ’a A.t
end =

struct
type _ t =

Pure : ’a → ’a t
| Apply : (’a → ’b) t * ’a A.t → ’b t

(* add definitions for Applicative, lift and observe *)
end

7. [HH] Show that if the arguments to the Compose functor of Section 7.4.8
satisfy the applicative laws then the output module also satisfies the laws.

8. [HH] Show that the Compose functor is associative — that is, show that
Compose(F)(Compose(G)(H)) produces the same result as Compose
(Compose(F)(G))(H) for any applicative implementations F, G and H.

9. [H] Define an implementation Id of the APPLICATIVE interface that is
an identity for composition, so that Compose(Id)(A) and Compose(A
)(Id) are equivalent to A.

10. [HHH] Show that Compose(F)(G) is not the same as Compose(G)(F)
for all applicatives F and G — i.e. that applicative composition is not
commutative.

11. [HHH] Here is an alternative way of defining applicatives:

module type APPLICATIVE’ =
sig

type _ t
val pure : ’a → ’a t
val map : (’a → ’b) → ’a t → ’b t
val pair : ’a t → ’b t → (’a * ’b) t

end

Show how to convert between APPLICATIVE and APPLICATIVE’ using
functors. What laws should implementations of APPLICATIVE’ satisfy?

12. [HH] Show that if M is a monoid implementation satisfying the monoid
laws then Phantom_monoid_applicative(M) (Section 7.4.10) is an
applicative implementation satisfying the applicative laws.

13. [HHH] Define a Monoid_of_applicative functor whose input is an
APPLICATIVE and whose output is a MONOID. How is it related to

7.6. EXERCISES 151

the Phantom_monoid_applicative functor? In particular, how is
Phantom_monoid_applicative(Monoid_of_applicative(A)) re-
lated to A? How is Monoid_of_applicative(Phantom_monoid_applicative
(M)) related to M?

14. [HH] Show that if A is an applicative implementation satisfying the ap-
plicative laws then Monoid_of_applicative(A) (Exercise 13) is a
monoid implementation satisfying the monoid laws.

152 CHAPTER 7. FIRST-CLASS EFFECTS

Further reading

• Applicatives are a convenient basis for building concurrent computa-
tions, since the applicative interface does not provide a way to make
one computation depend on the result of another. The following paper
describes an internal concurrent Facebook service based on applica-
tives.

There is no fork: an abstraction for efficient, concurrent, and concise
data access
Simon Marlow, Louis Brandy, Jonathan Coens and Jon Purdy
International Conference on Functional Programming (2014)

• Algebraic effects and handlers are a recent refinement of monadic
effects which make it easier to compose independently-defined effects.
The following paper investigates variants of algebraic effects based on
applicatives (idioms) and on another interface to computation, arrows.

Algebraic effects and effect handlers for idioms and arrows
Sam Lindley
Workshop on Generic Programming (2014)

• The following two papers present a core calculus for another interface
to computation, arrows, and compare the relative expressive power of
arrows, applicatives and monads.

The arrow calculus
Sam Lindley, Philip Wadler, and Jeremy Yallop
Journal of Functional Programming (2010)

Idioms are oblivious, arrows are meticulous, monads are promiscuous
Sam Lindley, Philip Wadler, and Jeremy Yallop
Mathematically Structured Functional Programming (2008)

• The usefulness of parameterised monads extends well beyond the
typed state monad that we have considered in this chapter. The
following paper presents parameterised monads in detail with many
examples, including typed I/O channels, delimited continuations and
session types.

Parameterised notions of computation
Robert Atkey
Journal of Functional Programming (2009)

• As we saw in Section 7.4.8, applicatives can be built by composing
simpler applicatives. The following paper shows how to compose three
simple applicatives to build a reusable abstraction for web program-
ming.

7.6. EXERCISES 153

The essence of form abstraction
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop
Asian Symposium on Programming Languages and Systems (2008)

• McBride and Paterson’s 2008 paper introduced the applicative inter-
face:

Applicative programming with effects
Conor McBride and Ross Paterson
Journal of Functional Programming (2008)

• Parser combinators have become a standard example for using monads
to structure programs. (However, the typical presentations of parser
combinators are more suited to lazy languages like Haskell than eager
languages like OCaml.) The following paper is a tutorial introduction
to monadic parser combinators.

Monadic parser combinators
Graham Hutton and Erik Meijer
Technical Report, University of Nottingham (1996)

• The higher-order nature of the monadic interface makes it impossible
to analyse parsers before running them, leading to inefficiencies and
delayed error reporting. Swierstra and Duponcheel structure parsers
using an applicative interface to make them more amenable to static
analysis. Applicatives aren’t discussed explicitly in the paper, since
they were only identified as a separate abstraction some years later.

Deterministic, Error-Correcting Combinator Parsers
S. Doaitse Swierstra and Luc Duponcheel
Advanced Functional Programming (1996)

• Wadler introduced monads as a way of structuring functional pro-
grams in the early 1990s. The following paper focuses on using mon-
ads for I/O in a pure language:

How to declare an imperative
Philip Wadler
International Logic Programming Symposium (1995)

• Although monads do not compose directly, the related concept of
monad transformers, described in the following paper, can be used to
compose monadic effects.

Monad Transformers and Modular Interpreters
Sheng Liang, Paul Hudak and Mark P. Jones
Principles of Programming Languages (1995)

154 CHAPTER 7. FIRST-CLASS EFFECTS

