Chapter 1

Lambda calculus

The lambda calculus serves as the basis of most functional programming lan-
guages. More accurately, we might say that functional programming languages
are based on the lambda calculi (plural), since there are many variants of lambda
calculus. In this chapter we’ll introduce four of these variants, starting with the
simply typed lambda calculus (Section 1.2), moving on to System F, the poly-
morphic lambda calculus (Section 1.3) and System Fw, a variant of System F
with type operators (Section 1.5) before concluding with the expressive calculus

of constructions (AC).

)\4)
(Section 1.2)

adjing
polymorphism

System F
(Section 1.3)

adling
type operators

System Fw
(Section 1.5)

adling
term-dependent types

AC
(Section 1.7)

Figure 1.1: Chapter plan

None of the calculi in this chapter are par-
ticularly suitable for programming. The simpler
systems are insufficiently expressive — for exam-
ple, they have no facilities for defining data types.
In contrast, System Fw and AC, the last systems
that we’ll look at, have excellent abstraction fa-
cilities but are rather too verbose for writing pro-
grams. In OCaml, the main language we’ll use in
the rest of the course, we might define the func-
tion that composes two functions as follows:

fun f g x—f (g x)

We can define the same function in Sys-
tem Fw, but the simple logic is rather lost in a
mass of annotations:

Aa::x.
AB: .
Avy:ox.
AM:ia— S.
Ag:y — a.
Ax:v.f (g x)



2 CHAPTER 1. LAMBDA CALCULUS

If these systems are unsuitable for program-
ming, why should we study them at all? One
reason is that many — perhaps most — of the
features available in modern functional program-
ming languages have straightforward translations
into System Fw or other powerful variants of the
lambda calculus'. The calculi in this chapter will
give us a simple and uniform framework for under-
standing many language features and program-
ming patterns in the rest of the course that might
otherwise seem complex and arbitrary.

The foundational nature of the more expres-
sive calculi means that we’ll see them in a variety
of roles during the course, including:

e as an elaboration language for type inference (lecture 2).

e as proof systems for reasoning with propositional and predicate logic (lec-
ture 3).

e as the background for parametricity properties (lectures 4-5)

e underlying and motivating higher-order polymorphism in languages such
as OCaml (lectures 4-5)

e as the elaboration language for modules (lectures 4-5)
e as the core calculus for GADTs and indexed data (lectures 7-8)

e as a foundation for multi-stage programming (lectures 14-16)

1.1 Typing rules

We'll present the various languages in this chapter using inference rules, which
take the following form:

premise 1 premise 2 .. premise N

- rule name
conclusion
This is read as follows: from proofs of premise 1, premise 2, ... premise n we
may obtain a proof of conclusion using the rule rule name. Here is an example
rule, representing one of the twenty-four Aristotelian syllogisms:

1 Some implementations of functional languages, such as the Glasgow Haskell Compiler, use
a variant of System Fw as an internal language into which source programs are translated as
an intermediate step during compilation to machine code. OCaml doesn’t use this strategy,
but understanding how we might translate OCaml programs to System Fw still gives us a
useful conceptual model.



1.2. SIMPLY TYPED LAMBDA CALCULUS 3

all M are P all S are M
all S are P

modus barbara
The upper-case letters M, P, and S in this rule are meta-variables: we may

replace them with valid terms to obtain an instance of the rule. For example,
we might instantiate the rule to

all programs are buggy all functional programs are programs

all functional programs are buggy modus barbara

The rules that we will see in this chapter have some additional structure:
each statement, whether a premise or a conclusion, typically involves a contezt,
a term and a classification. For example, here is the rule —-elim?:

'M:A— B
T'EFN:A

TN elim

Both the premises and the conclusion take the form I' = M : A, which we
can read “In the context I';, M has type A.” It is important to note that each
occurrence of I' refers to the same context (and similarly for M, N, A, and B):
the —-elim rule says that if the term M has type A — B in a context I', and
the term N has type A in the same context I', then the term M N has type B
in the same context I". As before, I', M, etc. are metavariables which we can
instantiate with particular contexts and terms to obtain facts about particular
programs.

1.2 Simply typed lambda calculus

We'll start by looking at a minimal language. The simply typed lambda calculus
lies at the core of typed functional languages such as OCaml. Every typed
lambda calculus program is (after a few straightforward syntactic changes) a
valid program in OCaml, and every non-trivial OCaml program is built from
the constructs of the typed lambda calculus along with some “extra stuff” —
polymorphism, data types, modules, and so on — which we will cover in later
chapters.

The name “simply typed lambda calculus” is rather unwieldy, so we’ll use
the traditional and shorter name A™. The arrow — indicates the centrality of
function types A — B.

Let’s start by looking at some simple A~ programs.

e The simplest complete program is the identity function, which simply
returns its argument. Since A is not polymorphic we need a separate
identity function for each type. At a given type A the identity function is
written as follows:

2We will often arrange premises vertically rather than horizontally.



4 CHAPTER 1. LAMBDA CALCULUS

Ax:A.x

In OCaml we write

fun x — x

or, if we’d like to be explicit about the type of the argument,

fun (x:a) — x

e The compose function corresponding to the mathematical composition
of two functions is written

AM:B—C.\g:A— B.Ax:A.f (g x)

for types A, B and C. In OCaml we write

fun £f g x - £ (g x)

Although simple, these examples illustrate all the elements of A™: types,
variables, abstractions, applications and parenthesization. We now turn to a
more formal definition of the calculus. For uniformity we will present both the
grammar of the language and the type rules® as inference rules.

The elements of the lambda calculi described here are divided into three
“sorts”:

e terms, such as the function application £ p. We use the letters L, M
and N (sometimes subscripted: L, Lo, etc.) as metavariables that range
over terms, so that we can write statements about arbitrary terms: “For
any terms M and N ...”.

e types, such as the function type B — B. The metavariables A and B
range over expressions that form types. We write M : A to say that the
term M has the type A.

e kinds, which you can think of as the types of type expressions. The
metavariable K ranges over kinds. We write T :: K to say that the type
expression T has the kind K.

3Here and throughout this chapter we will focus almost exclusively on the grammar and
typing rules of the language — the so-called static semantics — and treat the dynamic seman-
tics (evaluation rules) as “obvious”. There are lots of texts that cover the details of evaluation,
if you’re interested; Pierce’s book is a good place to start.



1.2. SIMPLY TYPED LAMBDA CALCULUS )

Kinds in A™ Rules that introduce kinds take the following form:

K is a kind
Kinds play little part in A, so their structure is trivial. The later calculi
will enrich the kind structure. For now there is a single kind, called .

i akind 4

Kinding rules in A~ The set of types is defined inductively using rules of
the form
r-A: K

which you can read as “type A has kind K in environment I'. We will have more
to say about environments shortly. In A~ there are two kinding rules, which
describe how to form types:

— Yind-B TEA:x TFB:x
TEB:x TrAS B«

kind-—

The kind-B rule introduces a base type B of kind *. Base types correspond
to primitive types available in most programming languages, such as the types
int, float, etc. in OCaml. They will not play a very significant part in the
development, but without them we would have no way of constructing types in
A7

The kind-— rule gives us a way of forming function types A — B from
types A and B. The arrow — associates rightwards: A — B — C means
A — (B — (), not (A — B) — C. We'll use parentheses in the obvious
way when we need something other than the default associativity, but we won’t
bother to include the (entirely straightforward) rules showing where parentheses
can occur.

Using the rules kind-B and kind-— we can form a variety of function types.
For example,

e 3, the base type.
e 3 — B, the type of functions from B to B.

e B — (B — B), the type of functions from B to functions-from-B-to-B.
The expression B — B — B has the same meaning.

e (B — B) — B, the type of functions from functions-from-B-to-B to 5.

Since the syntax of types is described using logical rules we can give formal
derivations for particular types. For example, the type (B — B) — B can be
derived as follows:

LFB:x kind-B LB k%nd—B .
B> B:ux kind-— FFB::x ll?ng—l’)’
'F(B—B)—B:x md=




6 CHAPTER 1. LAMBDA CALCULUS

In practice we will assume that all the types that appear in programs and
derivations are well-formed, and will sometimes omit explicit statements of well-
formedness in the interest of succinctness.

Environment rules in A~ Environments associate variables with their clas-

sifiers. In A7 there is only one sort of variables, for terms, and so environments

associate term variables with types. Later sections extend the type language

with variables, too; environments then additionally map type variables to kinds.
Rules for forming environments have the form

I' is an environment

In A7 there are two rules for forming environments:

- is an environment . .
I is an environment ' A

I',z:A is an environment

I-:

The rule I'-- introduces an empty environment. The rule I'-: extends an
existing environment I" with a binding z:A — that is, it associates the variable
x with the type A. (We use the letters z, y, z for variables.) We will be
a little informal in our treatment of environments, sometimes viewing them as
sequences of bindings and sometimes as sets of bindings. We’ll also make various
simplifying assumptions; for example, we’ll assume that each variable can only
occur once in a given environment. With more care it’s possible to formalise
these assumptions, but the details are unnecessary for our purposes here.

As with types, we can use I'-- and I'-: to form a variety of environments. For
example,

e The empty environment -

e An environment with two variable bindings -, z:B, f:(B — B)

Typing rules in A~ The rule I'-: shows how to add variables to an envi-
ronment. We’ll also need a way to look up variables in an environment. The
following rule is the first of the three A~ typing rules, which have the form
'+ M : A (read “the term M has the type A in environment I'"”) and describes
how to form terms:

r:Ael

Thao:Ad 0V

The tvar rule makes it possible to type open terms (i.e. terms with free
variables). If the environment I' contains the binding x:A4 then the term x has
the type A in T

The remaining two typing rules for A™ show how to introduce and eliminate
terms of function type — that is, how to define and apply functions.



1.2. SIMPLY TYPED LAMBDA CALCULUS 7

I'z:A-M:B ot I'-M:A— B
—-intro
T'M:AM:A— B r-N:A .
TEMN:p o oim

The introduction rule —-intro shows how to form a term Az:A.M of type
A — B. You can read the rule as follows: “the term Az:A.M has type A — B in
I if its body M has type B in I' extended with x:A”. Since we are introducing
the — operator, the rule has the function arrow — below the line but not above
it.

The elimination rule —-elim shows how to apply terms of function type.
The environment I' is the same throughout the rule, reflecting the fact that
no variables are bound by the terms involved. Since we are eliminating the —
operator, the rule has the function arrow — above the line but not below it.

The —-intro and —-elim form the first introduction-elimination pairt. We’'ll
see many more such pairs as we introduce further type and kind constructors.

We illustrate the typing rules by giving derivations for the identity and
compose functions (Figures 1.2 and 1.3)°

1.2.1 Adding products

Interesting programs typically involve more than functions. Useful program-
ming languages typically provide ways of aggregating data together into larger
structures. For example, OCaml offers various forms of variants, tuples and
records, besides more elaborate constructs such as modules and objects. The
A7 calculus doesn’t support any of these: there are no built-in types beyond
functions, and its abstraction facilities are too weak to define interesting new
constructs. In order to make the language a little more realistic we therefore
introduce a built-in type of binary pairs (also called “products”).

As before, we’ll start by giving some programs that we can write using
products:

e An apply function, that applies the first component of a pair to the
second:

Ap: (A—B) XA.fst p (snd p)

In OCaml we write

fun (f,p) — fp

e A dup function that builds a pair with equal components:

4Tt is possible to consider the environment and variable-lookup rules as an introduction
and elimination pair for environments, but we won’t take this point any further here.

5While the derivations may appear complex at first glance, they are constructed mechani-
cally from straightforward applications of the three typing rules for A™. If typing derivations
featured extensively in the course we might adopt various conventions to make them simpler
to write down, since much of the apparent complexity is just notational overhead.



LAMBDA CALCULUS

CHAPTER 1.

Az A
FAAx:A— A

—-intro

Figure 1.2: The derivation for the identity function.

wfiB—>C,gA— B,x:A+-g: A— B
wfiB—=CgA— B,x:AFxz: A

B C,g:A— BaiAr f:B—C FBoC.gAoBaArgs: B oM
wfB—=C,g:A— B,z:Ab f(gz): C ) —-elim
JBoC.gA—>BE wAf(gu): Ao C o
JBoCFAA— B A (ga):(AsB) 5 A Cmro
—-intro

‘FAf:B—=CA:A— BAx:A.f (9g2):(B—=-C)—»(A—B)—=>A—=C

Figure 1.3: The derivation for compose



1.2. SIMPLY TYPED LAMBDA CALCULUS 9

Ax:A.(x, x)

In OCaml we write

fun x — (x, x)

e The (bi)map function for pairs:

Af:A—C.A\g.B—=C.Ap.AXB.(f fst p,g snd p)

In OCaml we write

fun f g (x,y) = (f x, g vy)

e The function which swaps the elements of a pair:
Ap:AXxB.(snd p, fst p)
In OCaml we write

fun (x,y) — (y,x)

Kinding rules for x There is a new way of forming types A x B, and so we
need a new kinding rule.

T'HA:x I'B::x
I'FAXB:x*

kind-x

The kind-x rule is entirely straightforward: if A and B have kind *, then so
does A x B.

Typing rules for x There are three new typing rules:

'-M:A I'-M:AxB
I'-N:B s intro ' fst M : A
'(M,N): Ax B

x-elim-1

''-M:AxB

T snd 0. g < clim-2

The x-intro rule shows how to build pairs: a pair (M, N) of type A x B is
built from terms M and N of types A and B.

The x-elim-1 and x-elim-2 rules show how to deconstruct pairs. Given a
pair M of type A x B, fst M and snd M are respectively the first and second
elements of the pair. Unlike in OCaml, fst and snd are “keywords” rather than
first-class functions. For particular types A and B we can define abstractions A\p
:A x B.fst pand Ap:A x B.snd p, but we do not yet have the polymorphism
required to give definitions corresponding to the polymorphic OCaml functions:



10 CHAPTER 1. LAMBDA CALCULUS

val fst : 'a » 'b > ’a val snd : 'a » 'b > 'b
let £st (a, _) = a let snd (_, b) =D

1.2.2 Adding sums

Product types correspond to a simple version of OCaml’s records and tuples.
We next extend A~ with sum types, which correspond to a simple version of
variants.

Here are some programs that we can write with A~ extended with sums:

e The (bi-)map function over sums:

AMf:A—C.Ag:B—C.As:A+B.case s of x.f x | y.g y

In OCaml we write

fun £ g s - match s with Inl x> f x | Inr y > g vy

e The function of type A+B—B+A which swaps the inl and inr constructors:

As:A+B.case s of x.inr [B] x | y. inl [A] y

In OCaml we write

function Inl x — Inr x | Inr v — Inl y

e The function of type A+A—A that projects from either side of a sum:

As:A+A.case s of x.x | y.y

In OCaml we write

function Inl x > x | Inr vy >y

Kinding rules for + The kinding rule for sum types follows the familiar
pattern:

T'FA:x I'EB::x

THFA4+B:x kind-+

Typing rules for + There are three new typing rules:

P-M:A - I-N:B .
“intro-1 o2
Tl (B M:A+B 0 T inc (AN A B




1.3. SYSTEM F 11

'EL:A+B

Le:A-M:C

yBFN:C
I'+case Lofz.M | y.N : C

+-elim

The +-intro-1 and +-intro-2 rules show how to build values of sum type by
injecting with inl or inr. In order to maintain the property that each term has
a unique type we also require a type argument to inl and inr®

The +-elim rule shows how to deconstruct sums. We can deconstruct sum
values L of type A+ B if we can deconstruct both the left and the right summand.
Given an OCaml variant definition

type plus = Inl of a | Inr of b

the case expression

case L of x.M | y.N

corresponds to the OCaml match statement
match 1 with Inl x - m | Inr y — n

There is an appealing symmetry between the definitions of products and
sums. Products have one introduction rule and two elimination rules; sums
have two introduction rules and one elimination rule. We shall consider this
point in more detail in lecture 6 (The Curry-Howard correspondence).

1.3 System F

The simply typed lambda calculus A~ captures the essence of programming
with functions as first-class values, an essential feature of functional program-
ming languages. Our next calculus, System F (also known as the polymorphic
lambda calculus) captures another fundamental feature of typed functional pro-
gramming languages like OCaml and Haskell: parametric polymorphism.

We have already seen an example of the problems that arise in languages
that lack support for parametric polymorphism. In Section 1.2.1 the fst and
snd operations which project the elements of a pair were introduced as built-in
operators with special typing rules. It would be preferable to be able to define
fst and snd using the other features of the language, but it is clear that they
cannot be so defined, since A~ lacks even the facilities necessary to express their
types. A similar situation often arises during the development of a programming
language: the language is insufficiently expressive to support a feature that is
useful or even essential for writing programs. The most pragmatic solution is
often to add new built-in operations for common cases, as we have done with
products’. In this chapter we take the alternative approach of systematically

6These kinds of annotations are not needed in OCaml; can you see why?
7 Some examples from real languages: OCaml has a polymorphic equality operation that
works for all first-order types, but that cannot be defined within the language; Haskell’s



12 CHAPTER 1. LAMBDA CALCULUS

enriching the core language until it is sufficiently powerful to define new data
types directly.

The difficulties caused by the lack of polymorphism go beyond pairs. We
introduced A~ by showing how to write the identity and compose functions and
comparing the implementations with the corresponding OCaml code. In fact,
the comparison is a little misleading: in OCaml it is possible to define a single
identity function and a single compose function that work at all types, whereas
in A7 we must introduce a separate definition for each type. As the following
examples show, System F allows us to define the functions in a way that works
for all types.

e The polymorphic identity function of type Va:: ¥ .o —

Aa::x . Ax:a.x

e The polymorphic compose function of type Va::*.V3:: % Vy:x.(8 — v) —
(a—=p) = a—y

Aa::x AB::x Ay:i:ix A= v. Ag:a— B x:a. £ (g x)

e The polymorphic apply function of type Va:: x VG:: % .(a = ) x o — :
Aa::x . AB::x.X\p: (a = B) xa.fst p (snd p)

To put it another way, we can now use abstraction within the calculus (Ve ::
x.A) where we previously had to use abstraction about the calculus (For all
types A ...).

Kinding rules for V As the examples show, System F extends A~ with a
type-level operator Va:: x .— that binds a variable o within a particular scope.
There are two new kinding rules:

Ta:KEA:x azK el

ind- tyvar
IFVoa:K.A % kind-V I'Fa: K Y

The kind-V rule builds universal types Va::K.A. The type Va::K.A has kind
* under an environment I' if the type A has kind * under I' extended with an
entry for a.

The tyvar rule is a type-level analogue of the tvar rule: it allows type vari-
ables to appear within type expressions, making it possible to build open types
(i.e. types with free variables). If the environment I" contains the binding a:: K
then the type a has the kind K in T’

These rules involve a new kind of variable into the language. Type vari-
ables are bound by V and (as we shall see) by A, and can be used in place

deriving keyword supports automatically creating instances of a fixed number of built-in
type classes; C99 provides a number of type-generic macros which work across numeric types,
but does not offer facilities that allow the user to define such macros.



1.3. SYSTEM F 13

of concrete types in expressions. It is important to distinguish between type
variables (for which we write «, 8, 7) and metavariables (written A, B, C).
We use metavariables when we wish to talk about types without specifying any
particular type, but type variables are part of System F itself, and can appear
in concrete programs.

Environment rules for V The tyvar rule requires that we extend the defi-
nition of environments to support type variable bindings (associations of type
variables with their kinds):

I' is an environment K is a kind
I', a:: K is an environment

-

Typing rules for V Since we have a new type constructor V, we need a new
pair of introduction and elimination rules:

TFa:K+HM:A )
TFAa:K.M :Va:K.A V-intro I'-M:Va:K.A I'FB: K
' M [B]: Ala := B

V-elim

The V-intro rule shows how to build values of type Va:K.A — that is,
polymorphic values. The term Aa::K.M has type Va::K.A in T' if the body M
has the type A in I' extended with a binding for «.

The V-elim rule shows how to use values of polymorphic type via a second
form of application: applying a (suitably-typed) term to a type. If M has a
polymorphic type Va:: x.A then we can apply it to the type B (also written “in-
stantiate it at type B”) to obtain a term of type A[a := B] — that is, the type
A with all free occurrences of a replaced by the type B. (Once again, substi-
tution needs to be carefully defined to avoid inadvertently capturing variables,
and once again we omit the details.)

There is nothing in the OCaml language that quite corresponds to the ex-
plicit introduction and elimination of polymorphic terms. However, one way
to view OCaml’s implicit polymorphism is as a syntactic shorthand for (some)
System F programs, where constructs corresponding to V-intro and V-elim are
automatically inserted by the type inference algorithm. We will consider this
view in more detail in lecture 2 (Type Inference) and describe OCaml’s al-
ternatives to System F-style polymorphism in lectures 4 & 5 (Abstraction &
Parametricity).

1.3.1 Adding existentials

For readers of a logical bent the name of the new type operator V is suggestive.
Might there be a second family of type operators 37 It turns out that there
is indeed a useful notion of 3 types: just as V is used for terms which can be
instantiated at any type, 3 can be used to form types for which we have some
implementation, but prefer to leave the details abstract. These ezistential types



14 CHAPTER 1. LAMBDA CALCULUS

play several important roles in programming, and we will return to them on
various occasions throughout the course. For example,

e There is a close connection between the ¥V and 3 operators in logic and the
type operators that we introduce here, which we will explore in lecture 6.

e Just as in logic, there is also a close connection between the V operator
and the 3 operator.

e The types of modules can be viewed as a kind of existential type, as we
shall see in lecture 4.

e OCaml’s variant types support a form of existential quantification, as we
shall see in lecture 4.

It is possible to encode existential types using universal types. For now
we will find it more convenient to introduce them directly as an extension to
System F.

Kinding rules for 3 Adding existentials involves one new kinding rule, which

says that Ja::K.A has kind * if A has kind * in an extended environment:
Ia:KEA:x
'k Ja:K.A :

kind-d

Typing rules for 3 The typing rules for 3 follow the familiar introduction-
elimination pattern:

't M: Ala := B] Tk 3a:K.A o«

'+ pack B, M as Ja:K.A: Ja:K.A F-intro
'k M:J3a:K.A TFC: %
I oa:K,z:A-M':C .
F-elim

I'open M as a,zin M’ : C

The F-intro rule shows how to build values of existential type using a new
construct, pack. A pack expression associates two types with a particular term
M: if M may be given the type A[a := B] in the environment I for suitable A,
«a and B then we may pack M together with B under the type da::K.A. It is
perhaps easiest to consider the conclusion first: the expression pack B,M as
Ja:: K. A has the existential type Ja::K.A if replacing every occurrence of o in
A with B produces the type of M.

The J-elim rule shows how to use values of existential type using a new
construct open. “Opening” a term M with the existential type Ja:: K. A involves
binding the existential variable a: to the type A and a term variable = to the
term M within some other expression M’. It is worth paying careful attention
to the contexts of the premises and the conclusion. Since « is only in scope for
the typing of M’ it cannot occur free in the result type of the conclusion C.
That is, the existential type is not allowed to “escape” from the body of the
open.



1.3. SYSTEM F 15

J examples Existential types are more complex than the other constructs
we have introduced so far, so we will consider several examples. Each of our
examples encodes a data type using the constructs available in System F.

1.3.2 Encoding data types in System F

Our first example is a definition of the simplest datatype — that is, the “unit”
type with a single constructor and no destructor. OCaml has a built-in unit
type, but if it did not we might define its signature as follows:

type t
val u : t

The following System F expression builds a representation of the unit type
using the type of the polymorphic identity function, which also has a single
inhabitant:

pack (Va::*.a — q,
Aa.da:a.a)
as Ju::x.u

In the examples that follow we will write 1 to denote the unit type and ()
to denote its sole inhabitant.

Our next example defines a simple abstract type of booleans. OCaml has a
built-in boolean type, but if it did not we might define a signature for bools as
follows:

type t

val ff : t

val tt : t

val _if : t - 'a — "a — ’a

That is: there are two ways of constructing boolean values, tt and f£f, and
a branching construct _if_ which takes a boolean and two alternatives, one of
which it returns. We might represent boolean values using a variant type:

type boolean =
False : boolean
| True : boolean

Using boolean we can give an implementation of the signature:

module Bool

sig

type t

val £ff : t

val tt : t

val _if : t - ’a - 'a — 'a
end =
struct

type t = boolean



16 CHAPTER 1. LAMBDA CALCULUS

let £ff = False
let tt = True
let _if cond _then__else_ =
match cond with True — _then_ | False — _else_
end

If we ask OCaml to type-check the body of the module, omitting the signa-
ture, it produces the following output:
sig

type t = boolean

val ff : boolean

val tt : boolean

val _if_ : boolean -+ 'a — "a — 'a
end

The relationship between the inferred module type and the signature cor-
responds closely to the relationship between the supplied existential type and
the type of the body in the rule 3-intro. Substituting the actual representation
type boolean for the abstract type t in the signature gives the module type
of the body. We will explore this behaviour more fully in lecture 4.

Just as we can use variants to define booleans in OCaml, we can use sums to
define booleans in System F. Here is a definition analogous to the Bool module
above, using the left injection for false and the right injection for true:

pack (1+1,
(inr [1]1 (),
(inl [171 (),

Ab:Bool.Aa::x.Ar:a.As:a.case b of x.s | y.r)))
as d0::*.

B X

B X

B—=Va::ix.a—a—a

The unit and boolean examples encode data types with small fixed num-
bers of inhabitants. However System F is also sufficiently powerful to encode
datatypes with infinitely many members, as we now proceed to show.

A type representing the natural numbers can be defined in OCaml as a
variant with two constructors:

type nat =
Zero : nat
| Succ : nat — nat

Using these constructors we can represent every non-negative integer: for
example, the number three is represented as follows:

let three = Succ (Succ (Succ Zero))

We can encode the natural numbers in System F as follows:



1.4. EXERCISES 17

pack (Va::*x.a —(a— a)— «a,
(Aa::x. Az:a ds:a—a.z,
(An:Va::+.a = (a = a) = «a.

Aa::x. Az:a.ds:a—a.s (n [a] z s),
(An:Va::*x.a = (@ = a)— a.n))))
as dN :: x.
N x
(N—=N) x
(N>Va.a—(a—a)— a)

As for booleans there are two constructors corresponding to the construc-
tors of the data type and a branching operation (which we will call foldN)
which makes it possible to define functions that discriminate between different
numbers. The branching operation accepts a natural number of type N, a type
argument « specifying the type of the result, a value of type « to return in case
the input is zero and a function of type @ — « to use in case the input is the
successor of some other number n. Using foldN we might define the function
which tests whether a number is equal to zero by instantiating the result type
with Bool and passing suitable arguments for the zero and successor cases:

Am:N.An:N.foldN m [Bool] true (MAb:Bool.false)

Similarly we might define the addition function using fo1dN by instantiating
the result type with N:

Am:N.An:N.foldN m [N] n succ

1.4 Exercises

1. [*]: Give a typing derivation for swap

2. [%*]: We have seen how to implement booleans in System F using sums
and the unit type. Give an equivalent implementation of booleans using
polymorphism, using N encoding as an example.

3. [Y%%]: Implement a signed integer type, either using booleans, products
and N, or directly in System F. Give an addition function for your signed
integers.



18

CHAPTER 1. LAMBDA CALCULUS

These notes aim to be self-contained, but fairly terse. There are many
more comprehensive introductions to the typed lambda calculi available.
The following two books are highly recommended:

e Types and Programming Languages
Benjamin C. Pierce
MIT Press (2002)
http://www.cis.upenn.edu/~bcpierce/tapl/
There are copies in the Computer Laboratory library and many of the
college libraries.

e Lambda Calculi with Types
Henk Barendregt
in Handbook of Logic in Computer Science Volume II, Oxford
University Press (1992)
Available online: http://ttic.uchicago.edu/~dreyer/
course/papers/barendregt.pdf



http://www.cis.upenn.edu/~bcpierce/tapl/
http://ttic.uchicago.edu/~dreyer/course/papers/barendregt.pdf
http://ttic.uchicago.edu/~dreyer/course/papers/barendregt.pdf

