Interactive Formal Verification

Welcome

Dr. Dominic P. Mulligan

Programming, Logic, and Semantics Group,
University of Cambridge

Academic year 2017-2018



Course usually lectured by Prof. Lawrence Paulson

Sabattical leave this year


dominic.p.mulligan@gmail.com
vb358@cam.ac.uk

Course usually lectured by Prof. Lawrence Paulson
Sabattical leave this year
My office: FS16

+ Until start of November
- Then at ARM, but will return to finish course

My e-mail: dominic.p.mulligan@gmail.com


dominic.p.mulligan@gmail.com
vb358@cam.ac.uk

Course usually lectured by Prof. Lawrence Paulson
Sabattical leave this year
My office: FS16

+ Until start of November
- Then at ARM, but will return to finish course

My e-mail: dominic.p.mulligan@gmail.com
Course lab assistant: Dr. Victor Gomes

Victor’s e-mail: vb358acam.ac.uk


dominic.p.mulligan@gmail.com
vb358@cam.ac.uk

Course website

https://www.cl.cam.ac.uk/teaching/1718/L21/


https://www.cl.cam.ac.uk/teaching/1718/L21/

Course website:
https://www.cl.cam.ac.uk/teaching/1718/L21/
Course consists of 16 hours of contact time:

- 12 hours of lab-based lecturing,
- 4 hours of lab-based practicals


https://www.cl.cam.ac.uk/teaching/1718/L21/

Course website:
https://www.cl.cam.ac.uk/teaching/1718/L21/
Course consists of 16 hours of contact time:

- 12 hours of lab-based lecturing,
- 4 hours of lab-based practicals

Assessed via two practical exercises:

- First (computer science) on parser combinators

- Second (maths) on metric spaces


https://www.cl.cam.ac.uk/teaching/1718/L21/

IMPORTANT

All lecturing materials developed using Isabelle2016-1
Isabelle2017 about to be released imminently
Make sure you use Isabelle2016-1 for this course!

| recommend you install a local copy (ASAP) to follow along



Obtaining Isabelle

For your own machines: check course website

For lab machines see:
/auto/groups/acs-software/L21/Isabelle2016-1/

Contains Isabelle2016-1_app.tar.gz for installation in home
directory

Also can start Isabelle2016-1 from your machine via:

/auto/groups/acs-software/L21/Isabelle2016-1/
Isabelle2016-1/Isabelle2016-1


/auto/groups/acs-software/L21/Isabelle2016-1/
/auto/groups/acs-software/L21/Isabelle2016-1/Isabelle2016-1/Isabelle2016-1
/auto/groups/acs-software/L21/Isabelle2016-1/Isabelle2016-1/Isabelle2016-1

Free! See:
http://concrete-semantics.org/

A stripped down version is distributed with Isabelle


http://concrete-semantics.org/

Motivation




Developing software is hard

Most software (and hardware) has bugs

Bugs are costly, and potentially dangerous



Developing software is hard

Most software (and hardware) has bugs
Bugs are costly, and potentially dangerous
IDEA: treat program as a formal mathematical object

Prove relevant properties about model and obtain certified
implementation thereafter



Developing software is hard

Most software (and hardware) has bugs
Bugs are costly, and potentially dangerous
IDEA: treat program as a formal mathematical object

Prove relevant properties about model and obtain certified
implementation thereafter

Increases confidence in software/hardware implementation



Writing and checking proofs is hard

Proofs in mathematics and computer science may:

- Be tedious to check
- Contain subtle mistakes

- Be controversial (due to e.g. size, inability to review adequately)



Writing and checking proofs is hard

Proofs in mathematics and computer science may:

- Be tedious to check
- Contain subtle mistakes

- Be controversial (due to e.g. size, inability to review adequately)

IDEA: have a computer check that proof is valid



Writing and checking proofs is hard

Proofs in mathematics and computer science may:

- Be tedious to check
- Contain subtle mistakes

- Be controversial (due to e.g. size, inability to review adequately)
IDEA: have a computer check that proof is valid

Increases confidence in proof



Interactive theorem proving

Want to work in an expressive logic (which?)



Interactive theorem proving

Want to work in an expressive logic (which?)
The more expressive our logic the worse it behaves computationally

Proof search undecidable, intractable even in decidable fragments



Interactive theorem proving

Want to work in an expressive logic (which?)

The more expressive our logic the worse it behaves computationally
Proof search undecidable, intractable even in decidable fragments
IDEA: have the computer and a human work together

Human guides the proof search with computer:

- Checking that the human’s reasoning is valid

- Helping when it can: (semi-)decision procedures,
counterexample finders...



Isabelle, and Isabelle/HOL




Isabelle: a generic proof assistant

Isabelle initially written by Paulson starting mid 80s

Nipkow, Wenzel and others in Munich and elsewhere now a major
development force

Written in Standard ML, follows LCF design philosophy



Isabelle: a generic proof assistant

Isabelle initially written by Paulson starting mid 80s

Nipkow, Wenzel and others in Munich and elsewhere now a major
development force

Written in Standard ML, follows LCF design philosophy
Isabelle is a logical framework:

- Provides a relatively weak base (meta) logic
- More interesting (object) logics can be embedded in it

- Provides common reasoning tools, document preparation, and so
on



Many instantiations

Many different object logic embeddings:

- ZF set theory
- First-order logic
- Martin-Lof type theory

1



Many instantiations

Many different object logic embeddings:

- ZF set theory
- First-order logic
- Martin-Lof type theory

In this course:

- (Mostly) ignore Isabelle’s status as a logical framework
- Focus on one object logic: HOL

- Show off Isabelle/HOL as an interactive proof assistant for HOL

1



Gordon's higher-order logic (HOL)

HOL = Church’s Simple Theory of Types + type polymorphism



Gordon's higher-order logic (HOL)

HOL = Church’s Simple Theory of Types + type polymorphism

Suggested by Mike Gordon as a suitable logic for hardware verification

Implemented in HOL4, HOL Light, ProofPower HOL, HOL Zero



Gordon's higher-order logic (HOL)

HOL = Church’s Simple Theory of Types + type polymorphism

Suggested by Mike Gordon as a suitable logic for hardware verification
Implemented in HOL4, HOL Light, ProofPower HOL, HOL Zero

..and of course Isabelle/HOL



HOL as a logic:

- Is polymorphically typed (as opposed to e.g. ACL2)
- Does not have type-dependency (as opposed to e.g. Coq or Agda)
- Is higher-order (as opposed to e.g. ACL2, or tools like Vampire)

- Strikes a good middle ground between expressivity and ability to
interact with external tools (e.g. FOTPs, SMT solvers, etc.)



HOL as a logic:

- Is polymorphically typed (as opposed to e.g. ACL2)
- Does not have type-dependency (as opposed to e.g. Coq or Agda)
- Is higher-order (as opposed to e.g. ACL2, or tools like Vampire)

- Strikes a good middle ground between expressivity and ability to
interact with external tools (e.g. FOTPs, SMT solvers, etc.)

As a functional programmer HOL will “feel” very familiar

No need to learn a radically different way of doing things



First taste of Isabelle/HOL




See associated theory...

14



	Motivation
	Isabelle, and Isabelle/HOL
	First taste of Isabelle/HOL

