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Course website:
https://www.cl.cam.ac.uk/teaching/1718/L21/
Course consists of 16 hours of contact time:

- 12 hours of lab-based lecturing,
- 4 hours of lab-based practicals

Assessed via two practical exercises:

- First (computer science) on parser combinators

- Second (maths) on metric spaces


https://www.cl.cam.ac.uk/teaching/1718/L21/

IMPORTANT

All lecturing materials developed using Isabelle2016-1
Isabelle2017 about to be released imminently
Make sure you use Isabelle2016-1 for this course!

| recommend you install a local copy (ASAP) to follow along



Obtaining Isabelle

For your own machines: check course website

For lab machines see:
/auto/groups/acs-software/L21/Isabelle2016-1/

Contains Isabelle2016-1_app.tar.gz for installation in home
directory

Also can start Isabelle2016-1 from your machine via:

/auto/groups/acs-software/L21/Isabelle2016-1/
Isabelle2016-1/Isabelle2016-1


/auto/groups/acs-software/L21/Isabelle2016-1/
/auto/groups/acs-software/L21/Isabelle2016-1/Isabelle2016-1/Isabelle2016-1
/auto/groups/acs-software/L21/Isabelle2016-1/Isabelle2016-1/Isabelle2016-1

Free! See:
http://concrete-semantics.org/

A stripped down version is distributed with Isabelle


http://concrete-semantics.org/
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Most software (and hardware) has bugs
Bugs are costly, and potentially dangerous
IDEA: treat program as a formal mathematical object

Prove relevant properties about model and obtain certified
implementation thereafter

Increases confidence in software/hardware implementation
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Writing and checking proofs is hard

Proofs in mathematics and computer science may:

- Be tedious to check
- Contain subtle mistakes

- Be controversial (due to e.g. size, inability to review adequately)
IDEA: have a computer check that proof is valid

Increases confidence in proof
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Interactive theorem proving

Want to work in an expressive logic (which?)

The more expressive our logic the worse it behaves computationally
Proof search undecidable, intractable even in decidable fragments
IDEA: have the computer and a human work together

Human guides the proof search with computer:

- Checking that the human’s reasoning is valid

- Helping when it can: (semi-)decision procedures,
counterexample finders...



Isabelle, and Isabelle/HOL
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Isabelle initially written by Paulson starting mid 80s

Nipkow, Wenzel and others in Munich and elsewhere now a major
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Isabelle: a generic proof assistant

Isabelle initially written by Paulson starting mid 80s

Nipkow, Wenzel and others in Munich and elsewhere now a major
development force

Written in Standard ML, follows LCF design philosophy
Isabelle is a logical framework:

- Provides a relatively weak base (meta) logic
- More interesting (object) logics can be embedded in it

- Provides common reasoning tools, document preparation, and so
on



Many instantiations

Many different object logic embeddings:

- ZF set theory
- First-order logic
- Martin-Lof type theory
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Many instantiations

Many different object logic embeddings:

- ZF set theory
- First-order logic
- Martin-Lof type theory

In this course:

- (Mostly) ignore Isabelle’s status as a logical framework
- Focus on one object logic: HOL

- Show off Isabelle/HOL as an interactive proof assistant for HOL
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Gordon's higher-order logic (HOL)

HOL = Church’s Simple Theory of Types + type polymorphism

Suggested by Mike Gordon as a suitable logic for hardware verification
Implemented in HOL4, HOL Light, ProofPower HOL, HOL Zero

..and of course Isabelle/HOL
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HOL as a logic:

- Is polymorphically typed (as opposed to e.g. ACL2)
- Does not have type-dependency (as opposed to e.g. Coq or Agda)
- Is higher-order (as opposed to e.g. ACL2, or tools like Vampire)

- Strikes a good middle ground between expressivity and ability to
interact with external tools (e.g. FOTPs, SMT solvers, etc.)

As a functional programmer HOL will “feel” very familiar

No need to learn a radically different way of doing things



First taste of Isabelle/HOL




See associated theory...
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