
Interactive Formal Verification
Welcome

Dr. Dominic P. Mulligan

Programming, Logic, and Semantics Group,
University of Cambridge

Academic year 2017–2018

1



Administrivia

Course usually lectured by Prof. Lawrence Paulson

Sabattical leave this year

My office: FS16

• Until start of November
• Then at ARM, but will return to finish course

My e-mail: dominic.p.mulligan@gmail.com

Course lab assistant: Dr. Victor Gomes

Victor’s e-mail: vb358@cam.ac.uk

2

dominic.p.mulligan@gmail.com
vb358@cam.ac.uk


Administrivia

Course usually lectured by Prof. Lawrence Paulson

Sabattical leave this year

My office: FS16

• Until start of November
• Then at ARM, but will return to finish course

My e-mail: dominic.p.mulligan@gmail.com

Course lab assistant: Dr. Victor Gomes

Victor’s e-mail: vb358@cam.ac.uk

2

dominic.p.mulligan@gmail.com
vb358@cam.ac.uk


Administrivia

Course usually lectured by Prof. Lawrence Paulson

Sabattical leave this year

My office: FS16

• Until start of November
• Then at ARM, but will return to finish course

My e-mail: dominic.p.mulligan@gmail.com

Course lab assistant: Dr. Victor Gomes

Victor’s e-mail: vb358@cam.ac.uk

2

dominic.p.mulligan@gmail.com
vb358@cam.ac.uk


Administrivia

Course website:

https://www.cl.cam.ac.uk/teaching/1718/L21/

Course consists of 16 hours of contact time:

• 12 hours of lab-based lecturing,
• 4 hours of lab-based practicals

Assessed via two practical exercises:

• First (computer science) on parser combinators
• Second (maths) on metric spaces

3

https://www.cl.cam.ac.uk/teaching/1718/L21/


Administrivia

Course website:

https://www.cl.cam.ac.uk/teaching/1718/L21/

Course consists of 16 hours of contact time:

• 12 hours of lab-based lecturing,
• 4 hours of lab-based practicals

Assessed via two practical exercises:

• First (computer science) on parser combinators
• Second (maths) on metric spaces

3

https://www.cl.cam.ac.uk/teaching/1718/L21/


Administrivia

Course website:

https://www.cl.cam.ac.uk/teaching/1718/L21/

Course consists of 16 hours of contact time:

• 12 hours of lab-based lecturing,
• 4 hours of lab-based practicals

Assessed via two practical exercises:

• First (computer science) on parser combinators
• Second (maths) on metric spaces

3

https://www.cl.cam.ac.uk/teaching/1718/L21/


IMPORTANT

All lecturing materials developed using Isabelle2016-1

Isabelle2017 about to be released imminently

Make sure you use Isabelle2016-1 for this course!

I recommend you install a local copy (ASAP) to follow along

4



Obtaining Isabelle

For your own machines: check course website

For lab machines see:

/auto/groups/acs-software/L21/Isabelle2016-1/

Contains Isabelle2016-1_app.tar.gz for installation in home
directory

Also can start Isabelle2016-1 from your machine via:

/auto/groups/acs-software/L21/Isabelle2016-1/
Isabelle2016-1/Isabelle2016-1

5

/auto/groups/acs-software/L21/Isabelle2016-1/
/auto/groups/acs-software/L21/Isabelle2016-1/Isabelle2016-1/Isabelle2016-1
/auto/groups/acs-software/L21/Isabelle2016-1/Isabelle2016-1/Isabelle2016-1


Course text

Free! See:

http://concrete-semantics.org/

A stripped down version is distributed with Isabelle

6

http://concrete-semantics.org/


Motivation



Developing software is hard

Most software (and hardware) has bugs

Bugs are costly, and potentially dangerous

IDEA: treat program as a formal mathematical object

Prove relevant properties about model and obtain certified
implementation thereafter

Increases confidence in software/hardware implementation

7



Developing software is hard

Most software (and hardware) has bugs

Bugs are costly, and potentially dangerous

IDEA: treat program as a formal mathematical object

Prove relevant properties about model and obtain certified
implementation thereafter

Increases confidence in software/hardware implementation

7



Developing software is hard

Most software (and hardware) has bugs

Bugs are costly, and potentially dangerous

IDEA: treat program as a formal mathematical object

Prove relevant properties about model and obtain certified
implementation thereafter

Increases confidence in software/hardware implementation

7



Writing and checking proofs is hard

Proofs in mathematics and computer science may:

• Be tedious to check
• Contain subtle mistakes
• Be controversial (due to e.g. size, inability to review adequately)

IDEA: have a computer check that proof is valid

Increases confidence in proof

8



Writing and checking proofs is hard

Proofs in mathematics and computer science may:

• Be tedious to check
• Contain subtle mistakes
• Be controversial (due to e.g. size, inability to review adequately)

IDEA: have a computer check that proof is valid

Increases confidence in proof

8



Writing and checking proofs is hard

Proofs in mathematics and computer science may:

• Be tedious to check
• Contain subtle mistakes
• Be controversial (due to e.g. size, inability to review adequately)

IDEA: have a computer check that proof is valid

Increases confidence in proof

8



Interactive theorem proving

Want to work in an expressive logic (which?)

The more expressive our logic the worse it behaves computationally

Proof search undecidable, intractable even in decidable fragments

IDEA: have the computer and a human work together

Human guides the proof search with computer:

• Checking that the human’s reasoning is valid
• Helping when it can: (semi-)decision procedures,
counterexample finders...

9



Interactive theorem proving

Want to work in an expressive logic (which?)

The more expressive our logic the worse it behaves computationally

Proof search undecidable, intractable even in decidable fragments

IDEA: have the computer and a human work together

Human guides the proof search with computer:

• Checking that the human’s reasoning is valid
• Helping when it can: (semi-)decision procedures,
counterexample finders...

9



Interactive theorem proving

Want to work in an expressive logic (which?)

The more expressive our logic the worse it behaves computationally

Proof search undecidable, intractable even in decidable fragments

IDEA: have the computer and a human work together

Human guides the proof search with computer:

• Checking that the human’s reasoning is valid
• Helping when it can: (semi-)decision procedures,
counterexample finders...

9



Isabelle, and Isabelle/HOL



Isabelle: a generic proof assistant

Isabelle initially written by Paulson starting mid 80s

Nipkow, Wenzel and others in Munich and elsewhere now a major
development force

Written in Standard ML, follows LCF design philosophy

Isabelle is a logical framework:

• Provides a relatively weak base (meta) logic
• More interesting (object) logics can be embedded in it
• Provides common reasoning tools, document preparation, and so
on

10



Isabelle: a generic proof assistant

Isabelle initially written by Paulson starting mid 80s

Nipkow, Wenzel and others in Munich and elsewhere now a major
development force

Written in Standard ML, follows LCF design philosophy

Isabelle is a logical framework:

• Provides a relatively weak base (meta) logic
• More interesting (object) logics can be embedded in it
• Provides common reasoning tools, document preparation, and so
on

10



Many instantiations

Many different object logic embeddings:

• ZF set theory
• First-order logic
• Martin-Löf type theory

In this course:

• (Mostly) ignore Isabelle’s status as a logical framework
• Focus on one object logic: HOL
• Show off Isabelle/HOL as an interactive proof assistant for HOL

11



Many instantiations

Many different object logic embeddings:

• ZF set theory
• First-order logic
• Martin-Löf type theory

In this course:

• (Mostly) ignore Isabelle’s status as a logical framework
• Focus on one object logic: HOL
• Show off Isabelle/HOL as an interactive proof assistant for HOL

11



Gordon’s higher-order logic (HOL)

HOL = Church’s Simple Theory of Types + type polymorphism

Suggested by Mike Gordon as a suitable logic for hardware verification

Implemented in HOL4, HOL Light, ProofPower HOL, HOL Zero

...and of course Isabelle/HOL

12



Gordon’s higher-order logic (HOL)

HOL = Church’s Simple Theory of Types + type polymorphism

Suggested by Mike Gordon as a suitable logic for hardware verification

Implemented in HOL4, HOL Light, ProofPower HOL, HOL Zero

...and of course Isabelle/HOL

12



Gordon’s higher-order logic (HOL)

HOL = Church’s Simple Theory of Types + type polymorphism

Suggested by Mike Gordon as a suitable logic for hardware verification

Implemented in HOL4, HOL Light, ProofPower HOL, HOL Zero

...and of course Isabelle/HOL

12



HOL

HOL as a logic:

• Is polymorphically typed (as opposed to e.g. ACL2)
• Does not have type-dependency (as opposed to e.g. Coq or Agda)
• Is higher-order (as opposed to e.g. ACL2, or tools like Vampire)
• Strikes a good middle ground between expressivity and ability to
interact with external tools (e.g. FOTPs, SMT solvers, etc.)

As a functional programmer HOL will “feel” very familiar

No need to learn a radically different way of doing things

13



HOL

HOL as a logic:

• Is polymorphically typed (as opposed to e.g. ACL2)
• Does not have type-dependency (as opposed to e.g. Coq or Agda)
• Is higher-order (as opposed to e.g. ACL2, or tools like Vampire)
• Strikes a good middle ground between expressivity and ability to
interact with external tools (e.g. FOTPs, SMT solvers, etc.)

As a functional programmer HOL will “feel” very familiar

No need to learn a radically different way of doing things

13



First taste of Isabelle/HOL



See associated theory...

14


	Motivation
	Isabelle, and Isabelle/HOL
	First taste of Isabelle/HOL

