
Isabelle’s use of unification

When using rule, erule, drule Isabelle uses a process known as
higher-order unification

What is:

• Unification
• ...and specifically, higher-order unification?

1

Isabelle’s use of unification

When using rule, erule, drule Isabelle uses a process known as
higher-order unification

What is:

• Unification
• ...and specifically, higher-order unification?

1

Unification

Given two terms t, u defined over:

• Set of variables
• Constant symbols

can we find a substitution θ such that:

tθ = uθ

for some notion of equivalence or equality?

2

First-order unification

In first-order unification terms are first-order terms:

t,u, v ::= X | c | f (t1, . . . , tn)

Equality is syntactic identity

Substitutions are finite functions from variables to terms

This process may be familiar:

• Part of operational semantics of logic programming (e.g. Prolog)
• Used widely in first-order theorem proving

3

First-order unification

In first-order unification terms are first-order terms:

t,u, v ::= X | c | f (t1, . . . , tn)

Equality is syntactic identity

Substitutions are finite functions from variables to terms

This process may be familiar:

• Part of operational semantics of logic programming (e.g. Prolog)
• Used widely in first-order theorem proving

3

First-order unification

In first-order unification terms are first-order terms:

t,u, v ::= X | c | f (t1, . . . , tn)

Equality is syntactic identity

Substitutions are finite functions from variables to terms

This process may be familiar:

• Part of operational semantics of logic programming (e.g. Prolog)
• Used widely in first-order theorem proving

3

Example

Suppose + is a function symbol and 5 and 6 are constants

Suppose X and Y are variables

Unify:
+(+(5, 6), Y) with + (X,+(5, 5))

Solution X 7→ +(5, 6) and Y 7→ +(5, 5)

4

Example

Suppose + is a function symbol and 5 and 6 are constants

Suppose X and Y are variables

Unify:
+(+(5, 6), Y) with + (X,+(5, 5))

Solution X 7→ +(5, 6) and Y 7→ +(5, 5)

4

Example

Suppose + is a function symbol and 5 and 6 are constants

Suppose X and Y are variables

Unify:
+(+(5, 6), Y) with + (X,+(5, 5))

Solution X 7→ +(5, 6) and Y 7→ +(5, 5)

4

Properties of first-order unification

Has many nice properties:

• Decidable
• Most general unifiers exist
• Linear-time algorithm via Martelli and Montanori

5

Isabelle’s terms

Terms in Isabelle are typed λ-terms

First-order unification inappropriate:

• Notion of equality is β(η)-equivalence
• Substitutions are capture avoiding substitutions from λ-calculus

Need higher-order unification...

6

Isabelle’s terms

Terms in Isabelle are typed λ-terms

First-order unification inappropriate:

• Notion of equality is β(η)-equivalence
• Substitutions are capture avoiding substitutions from λ-calculus

Need higher-order unification...

6

Isabelle’s terms

Terms in Isabelle are typed λ-terms

First-order unification inappropriate:

• Notion of equality is β(η)-equivalence
• Substitutions are capture avoiding substitutions from λ-calculus

Need higher-order unification...

6

Properties of higher-order unification

• Unifiability test is undecidable (Goldfarb and Huet)
• When unifiers do exist, most general unifiers need not
• Unifier set may be infinite

Example:

Unify (where F is a variable of function type and c is a constant):

F c and c

Consider two different solutions:

F 7→ λx.c and F 7→ λx.x

Note (λx.c)c and (λx.x)c are both equivalent to c (in equational
theory of simply-typed λ-calculus)

7

Properties of higher-order unification

• Unifiability test is undecidable (Goldfarb and Huet)
• When unifiers do exist, most general unifiers need not
• Unifier set may be infinite

Example:

Unify (where F is a variable of function type and c is a constant):

F c and c

Consider two different solutions:

F 7→ λx.c and F 7→ λx.x

Note (λx.c)c and (λx.x)c are both equivalent to c (in equational
theory of simply-typed λ-calculus)

7

All is not lost!

Gerard Huet discovered a semi-decision procedure for higher-order
unification in 1970s

Huet’s algorithm:

• Finds unifiers when they exist
• May not terminate if unifiers do not exist
• Generally works well in practice

Most Isabelle unification problems are pattern unification problems:

• Decidable subfragment
• Discovered by Miller whilst working on λProlog
• Most general unifiers exist
• Efficient algorithms exist for pattern unification (Qian: linear
time/space)

Isabelle uses pattern unification to reduce calls to Huet’s algorithm

8

All is not lost!

Gerard Huet discovered a semi-decision procedure for higher-order
unification in 1970s

Huet’s algorithm:

• Finds unifiers when they exist
• May not terminate if unifiers do not exist
• Generally works well in practice

Most Isabelle unification problems are pattern unification problems:

• Decidable subfragment
• Discovered by Miller whilst working on λProlog
• Most general unifiers exist
• Efficient algorithms exist for pattern unification (Qian: linear
time/space)

Isabelle uses pattern unification to reduce calls to Huet’s algorithm

8

