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1 Introduction

This is the second assessed exercise for the L21 “Interactive Formal Verification” MPhil course
in academic year 2017–2018. In this exercise you will prove some properties of structures called
metric spaces and two closely associated concepts: continuity and open balls. The exercise
will test your ability to write structured proofs, work with sets and quantifiers, and carefully
select relevant auxiliary lemmas and introduction and elimination principles to make theorem
proving easier. Indeed, all proofs should be written as Isar structured proofs, as far as possible.
Concretely, the marking scheme for this exercise is as follows (out of a total of 100):

• 50 marks for correct definitions, lemma statements and structured proofs, in accor-
dance with the distribution of marks outlined in the body of this document,

• 30 marks for extra proofs of properties about metric spaces, continuity and open balls
presented in this exercise, more definitions related to metric spaces and properties about
them, or the use of features of Isabelle not lectured in class, or similar along these lines.
Any reasonable evidence that you have gone “above and beyond” in your use of Isabelle
will be considered here, and obviously the more ambitious you are, the more marks you
accrue,

• 20 marks for a nice writeup detailing all decisions made in your choice of lemmas,
proof strategies, and so on, and an explanation as to what extensions you have decided
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to implement, or novel features of Isabelle that you have used, to merit some of the 30
marks mentioned above.

Your submissions should be submitted electronically on the L21 Moodle site before 4pm
Cambridge local time on submission day. See the course website for submission dates for the
two assessed exercises. Submissions should consist of an edited version of the theory file that
this document is based on (also available from the course website) that includes your solutions
to the exercises contained within, along with a PDF document containing your writeup. Your
writeup need not be especially long—2 sides of A4 will suffice—but it should be detailed,
describing auxilliary lemmas and definitions that you introduced, if any, design decisions, and
so on. Late submissions will of course be penalised, and as always students should not confer
with each other when answering the sheet.

Before beginning: for those who have not encountered metric spaces before it may be a
good idea for you to skim-read the Wikipedia article on the subject to familiarise yourself
with key concepts before beginning.1 However, the exercises have been written in such a way
that consulting any such background material on metric spaces is not strictly necessary, with
enough background information embedded within this document to help you through.

1See https://en.wikipedia.org/wiki/Metric space
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2 Metric spaces, and some examples

As the definition of metric spaces relies crucially on the real numbers, we will be working with
the Isabelle/HOL theory Complex Main—rather than the more usual Main—for this exercise.
This theory imports an implementation of the real and complex numbers, as well as associated
definitions and theorems:

theory Assessed-Exercise-Two-Questions
imports Complex-Main

begin

Consider the distance between any two points in R3, the absolute distance between two
integers, or the Lehvenstein (edit) distance between a pair of strings. Many mathematical
objects have a notion of distance associated with them—and some even have multiple different
reasonable notions of distance. Metric spaces are intended as an abstraction of all of these
notions of distance, and of our own informal understanding of this concept.

Formally, a metric space 〈C, δ〉 is a carrier set C paired with a metric (or distance) function
δ : C × C → R that intuitively represents the distance between any two points of the carrier
set, C. We can capture this structure in Isabelle/HOL using a record with two fields, one
corresponding to the carrier, and the other to the metric function:

record ′a metric-space =
carrier :: ′a set
metric :: ′a ⇒ ′a ⇒ real

I note here that, differing slightly from the standard mathematical presentation, I have Curried
the metric function in the Isabelle/HOL modelling of a metric space. This is a minor difference
that has no impact on the theory. Also, I use Isabelle’s type polymorphism to express an
ambivalence in the type of the contents of the carrier set.

As a supposed generalisation of our intuitive notion of distance, a metric function must satisfy
a number of important laws, or properties, in order for the pair 〈C, δ〉 to be a valid metric
space. These are as follows:

• It makes no sense to state that one object is a negative distance from some other object:
distances are only ever zero or positive, and never negative. Therefore the real number
returned by a metric space’s metric function for any two points must be non-negative.

• The distance travelled when walking from Cambridge to St. Neots is the same as the
distance travelled when walking from St. Neots to Cambridge. Generalising, the distance
between a point x and a point y must be the same as the distance between the point y
and the point x. That is: a metric space’s metric function is symmetric,

• The distance between any two points is zero if and only if the two points are identical.
This law is a little harder to justify intuitively, as in natural language we often say that
the distance between two touching objects is zero. However, if we think of the elements
of the carrier set as “points” with no internal volume then the axiom asserts that any
two co-located points are identical,

• There are no shortcuts: a metric function must capture the shortest distance between
any two points. The distance travelled when travelling from point x to z via an interme-
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diary point y must be at least as long as the distance travelled simply moving between
points x and z directly.

The third law above is sometimes known as the “identity of indiscernibles”, whilst the last
law is sometimes referred to as the “triangular inequality”. These laws can be easily captured
as a HOL predicate on metric space records, asserting that a carrier set and metric function
pairing constitute a valid metric space:

definition metric-space :: ′a metric-space ⇒ bool where
metric-space M ≡

(∀ x∈carrier M . ∀ y∈carrier M . metric M x y ≥ 0 ) ∧
(∀ x∈carrier M . ∀ y∈carrier M . metric M x y = metric M y x ) ∧
(∀ x∈carrier M . ∀ y∈carrier M . metric M x y = 0 ←→ x = y) ∧
(∀ x∈carrier M . ∀ y∈carrier M . ∀ z∈carrier M .

metric M x z ≤ metric M x y + metric M y z )

Note here that I use the same name, metric space, to denote both the underlying type of
metric space records as well as the predicate asserting that those records correctly model a
metric space. This does not matter—the two names live in different namespaces. Now that
we have a suitable set of definitions for modelling metric spaces in Isabelle/HOL we can begin
showing that some concrete carrier set and metric function pairings are indeed valid metric
spaces. As a first example, a metric space can be constructed from the set of real numbers by
taking the distance between any two reals, j and k, to be their absolute difference, | j − k |.
We can capture this by defining a suitable instance of the metric space record:

definition real-abs-metric-space :: real metric-space where
real-abs-metric-space ≡ (| carrier = UNIV , metric = λx y . abs (x − y) |)

Note here that the carrier set of the metric space is UNIV, the universal set. Isabelle correctly
infers that this has type real set as the type of real abs metric space has been constrained
to the type real metric space. Now that we have a pairing of a carrier set and metric
function, we must show that this pairing is indeed a valid metric space. We do this by
proving that the metric space predicate holds of this record.

Exercise (4 marks): prove that the predicate metric space holds of real abs metric space

by proving the following theorem. That is, replace the oops command below with a complete
structured proof.

theorem
shows metric-space real-abs-metric-space
oops

The set of real numbers can be lifted into a metric space in another way, using the so-called
British Rail metric which models the tendency of all rail journeys between any two points in
the United Kingdom to proceed by first travelling to London, and then travelling onwards.
(The French call this the SNCF metric due to a similar tendency in Metropolitan France.)
This metric space can again be captured quite easily in Isabelle/HOL, by following the same
pattern as before.

Exercise (4 marks): prove that the predicate metric space holds of br metric space by
proving the following theorem. That is, replace the oops command below with a complete
structured proof.
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definition br-metric-space :: real metric-space where
br-metric-space ≡ (| carrier = UNIV , metric = λx y . if x = y then 0 else abs x + abs y |)

theorem
shows metric-space br-metric-space
oops

As a final example, we consider endowing pairs of integers with a metric. For pairs of integers
(i1, j1) and (i2, j2) one can use | i1−i2 | + | j1−j2 | as a metric—sometimes called the taxicab
metric. Proving that this is a valid metric space is a little more involved than the other two
examples, due to fiddling with pairs, but still fairly straightforward.

Exercise (5 marks): prove that the predicate metric space holds of taxicab metric space

by proving the following theorem. That is, replace the oops command below with a complete
structured proof.

definition taxicab-metric-space :: (int × int) metric-space where
taxicab-metric-space ≡

(| carrier = UNIV , metric = λp1 p2 . abs (fst p1 − fst p2 ) + abs (snd p1 − snd p2 ) |)

theorem
shows metric-space taxicab-metric-space
oops

3 Making new metric spaces from old

We now have a handful of concrete metric spaces. Given such a collection of existing metric
spaces, can we produce new metric spaces using generic constructions? That is, are there
operations that take an arbitrary metric space and can produce new ones? In this section,
we explore three different ways of building new metric spaces from old: restricting a metric
space to a subset of the carrier, shifting a metric via a non-zero constant, and finally taking
the product of two metric spaces. The first two are relatively straightforward:

Exercise (3 marks): Suppose 〈C, δ〉 is a metric space and suppose S ⊆ C. Show that 〈S, δ〉
is also a metric space by stating and proving (with a structured proof) a relevant lemma.

Exercise (3 marks): Suppose 〈C, δ〉 is a metric space. Suppose also that k > 0 and that
δ′(x, y) = k · δ(x, y). Show that 〈C, δ′〉 is a metric space by stating and proving (with a
structured proof) a relevant lemma.

Lastly, we consider taking the product of two metric spaces. Recall that mathematically S×T
denotes the Cartesian product of two sets, consisting of all ordered pairs (s, t) where s ∈ S
and t ∈ T .

Exercise (5 marks): Suppose 〈S, δ1〉 and 〈T, δ2〉 are metric spaces. Show that the set S×T
can be lifted into a metric space by first finding a suitable metric and thereafter proving (with
a strucured proof) a relevant lemma. Your metric on S×T must make use of both δ1 and δ2.
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4 Continuous functions, and some examples

One reason why metric spaces are mathematically interesting is because they provide an
abstract venue within which one can define the important notion of continuous function, a
core concept in topology and analysis. Indeed, metric spaces can be seen as a precursor to
topology.

Suppose that 〈S, δ1〉 and 〈T, δ2〉 are metric spaces, and f : S → T is a function mapping
elements of S to T . Suppose also that s ∈ S is a point in S. We say that the function f
is continuous at the point s if for every ε > 0 there exists d > 0 such that δ1(x, s) < d then
δ2(fx, fs) < ε for all x ∈ S. Further, call the function f : S → T continuous if f is continuous
at every point s ∈ S. These two definitions can be captured in Isabelle/HOL as follows:

context fixes M1 :: ′a metric-space and M2 :: ′b metric-space begin

definition continuous-at :: ( ′a ⇒ ′b) ⇒ ′a ⇒ bool where
continuous-at f a ≡ ∀ ε>0 .

(∃ d>0 . ∀ x∈carrier M1 . metric M1 x a < d −→ metric M2 (f x ) (f a) < ε)

definition continuous :: ( ′a ⇒ ′b) ⇒ bool where
continuous f ≡ ∀ x∈carrier M1 . continuous-at f x

end

As an aside, here I use a context block to fix two arbitrary metric spaces—M1 and M2—of the
correct type for the duration of my definitions. This means that I do not need to add the two
metric spaces as explicit parameters to the continuous at and continuous functions but
can declare them as parameters “up front”. Inspect the type of the definitions to see what
context does:

term continuous-at
term continuous

Which functions are continuous? One obvious contender is the identity function. Suppose
〈S, δ〉 is a metric space. Then the identity function id : S → S maps elements of the carrier
S onto elements of the carrier S—that is, the identity function can be seen as a map from a
metric space back onto itself.

Exercise (3 marks): show that the identity function id is a continuous function between a
metric space and itself by stating and proving (with a strucured proof) a relevant lemma.

Constant functions are also continuous. Suppose 〈S, δ1〉 and 〈T, δ2〉 are metric spaces and
t ∈ T is a point in T . Suppose also that f : S → T maps all s to t (i.e. it is a constant
function that always returns t). Then f is continuous.

Exercise (4 marks): show that constant functions are continuous by proving the following
lemma. That is, replace the oops command below with a complete structured proof.

lemma continuous-const :
assumes metric-space M1 and metric-space M2

and y ∈ carrier M2
shows continuous M1 M2 (λx . y)
oops
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Lastly, suppose 〈S, δ1〉, 〈T, δ2〉, and 〈U, δ3〉 are metric spaces. Suppose also that f : S → T
and g : T → U are continuous functions between relevant metric spaces. Then, providing that
for every s ∈ S we have fs ∈ T holds, the composition (g ◦ f) : S → U is also a continuous
function between the metric spaces 〈S, δ1〉 and 〈U, δ3〉.
Exercise (6 marks): show that the composition of two continuous functions is continuous
by proving the following lemma. That is, replace the oops command below with a complete
structured proof.

lemma continuous-comp:
assumes metric-space M1 and metric-space M2 and metric-space M3

and continuous M1 M2 f and continuous M2 M3 g
and

∧
x . x ∈ carrier M1 =⇒ f x ∈ carrier M2

shows continuous M1 M3 (g o f )
oops

5 Open balls

Suppose 〈S, δ〉 is a metric space and c ∈ S is a point in S. Suppose also that r > 0 is some
strictly positive real number. Define the open ball of radius r around the point c as the set
of all points in S that are strictly less than r distance away from the point c when measured
using the metric δ. Where the underlying metric space is obvious, I will write B(c, r) for the
open ball around point c of radius r.

Exercise (2 marks): Suppose 〈S, δ〉 is a metric space. Define the open ball B(c, r) in
this metric space by completing the definition of open ball. That is, replace the consts

declaration below with a complete definition.

consts open-ball :: ′a metric-space ⇒ ′a ⇒ real ⇒ ′a set

For any open ball B(c, r) in a metric space 〈S, δ〉 we have that B(c, r) ⊆ S, i.e. open balls are
always subsets of the underlying metric space’s carrier set. This fact holds for any ball of any
radius.

Exercise (2 marks): show that an arbitrary open ball in a fixed metric space is a subset
of that metric space’s carrier set by stating and proving (with a structured proof) a relevant
lemma.

Moreover, we have that in a fixed metric space, the open ball B(c, 0) = {}. That is, open
balls of zero radius are the empty set.

Exercise (2 marks): show that an open ball in a fixed metric space with radius 0 is the
empty set.

Additionally, it should be intuitively obvious that for any open ball in a fixed metric space
B(c, r) where r > 0 we have the property that c ∈ B(c, r), i.e. the open ball contains its own
centre as a point.

Exercise (3 marks): show that any open ball in a fixed metric space with strictly positive
radius contains its centre as a point by proving the following lemma. That is, replace the
oops command below with a complete structured proof.

lemma centre-in-open-ball :
assumes metric-space M and c ∈ carrier M
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and 0 < r
shows c ∈ open-ball M c r
oops

Lastly, suppose we have two open balls around the same centre point—B(c, r) and B(c, s)—
such that r ≤ s where c is contained within some ambient fixed metric space. Then it should
be obvious that the open ball with smaller radius is a subset of the open ball with the larger
radius.

Exercise (4 marks): show that an open ball around a fixed centre point with a smaller
radius than another open ball around the same fixed centre point is a subset of the latter
open ball by proving the following theorem. That is, replace the oops command below with
a complete structured proof.

lemma open-ball-le-subset :
assumes metric-space M

and c ∈ carrier M and r ≤ s
shows open-ball M c r ⊆ open-ball M c s
oops

end

The end. . .
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