
L21 Interactive Formal Verification

Michaelmas Term, Academic Year 2017–2018

Assessed Exercise 1: Combinator Parsing

Dr. Dominic P. Mulligan

October 5, 2017

Contents

1 Introduction 1

2 Parsers, and some useful combinators 3
2.1 Slightly more complex combinators . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Some properties of this library 6
3.1 Equivalence of parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Parsers have a commutative monoidal structure under choice . . . . . . . . . 6
3.3 Map is functorial, and has an alternative definition . . . . . . . . . . . . . . . 7
3.4 Bind and succeed satisfy the monad laws (and other properties) . . . . . . . . 7
3.5 Properties of iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Example: parsing a fragment of English 9
theory Assessed-Exercise-One-Questions

imports Main ∼∼/src/HOL/Library/Monad-Syntax
begin

1 Introduction

This is the first assessed exercise for the L21 “Interactive Formal Verification” MPhil course
in academic year 2017–2018. In this exercise you will write some parser combinators and
thereafter prove some simple properties about these combinators. The exercise will test your
ability to write recursive and non-recursive functions in Isabelle/HOL, work with sets and
quantifiers, and prove properties about functions using induction and simple automation.
Note that for this first exercise, structured proofs written in Isar are not required, though
for extra credit more ambitious students could try to convert some of their apply-style proofs
into Isar. Concretely, the marking scheme for this exercise is as follows (out of a total of 100):

• 50 marks for correct definitions and lemmas, in accordance with the distribution of
marks outlined in the body of this document,
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• 30 marks for beautiful proofs and definitions, some use of Isar, extra proofs of proper-
ties about the combinators presented in this exercise, or more useful combinators and
properties about them, or the use of features of Isabelle not lectured in class. Any rea-
sonable evidence that you have gone “above and beyond” in your use of Isabelle will be
considered here, and obviously the more ambitious you are, the more marks you accrue,

• 20 marks for a nice writeup detailing all decisions made in your choice of lemmas,
proof strategies, and so on, and an explanation as to what extensions you have decided
to implement, or novel features of Isabelle that you have used, to merit some of the 30
marks mentioned above.

Your submissions should be submitted electronically on the L21 Moodle site before 4pm
Cambridge local time on submission day. See the course website for submission dates for the
two assessed exercises. Submissions should consist of an edited version of the theory file that
this document is based on (also available from the course website) that includes your solutions
to the exercises contained within, along with a PDF document containing your writeup. Your
writeup need not be especially long—2 sides of A4 will suffice—but it should be detailed,
describing auxilliary lemmas and definitions that you introduced, if any, design decisions, and
so on. Late submissions will of course be penalised, and as always students should not confer
with each other when answering the sheet.

Before beginning: for those who have not encountered parser combinators before, it may
be a good idea for you to skim-read Hutton’s article on the subject before proceeding with the
exercise to gain some background.1 However, the exercises have been written in such a way
that consulting any such background material on combinator parsing is not strictly necessary,
with enough background information embedded within this document to help you through.

1See http://eprints.nottingham.ac.uk/221/1/parsing.pdf
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2 Parsers, and some useful combinators

Parsing is a common task when developing computer systems. But what actually are parsers?
Abstractly, parsers take a string of characters and either fail, or return a result derived from
a prefix of that string paired with a continuation string to parse further. Note here that
“characters” need not be concrete ASCII or Unicode characters, but may be (and often are)
lexical tokens of the language being parsed, derived from a separate lexing step. Running with
this idea, we can model parsers as functions that take as input an arbitrary list of generalised
characters and return a set of parsed values, paired with continuation lists of characters yet to
parse. Using this scheme, not only are we parametric in the underlying character and return
value types, but failure and parse ambiguity can be handled uniformly: a parser returning an
empty set of results signals failure, and ambiguity can be handled by simply returning the set
of all possible parse results.

Concretely, in Isabelle/HOL, we can capture this view of parsing as a datatype, like follows:

datatype ( ′a, ′b) parser
= Parser ′a list ⇒ ( ′a list × ′b) set

Here, the type variable ’a stands for the type of elements in the list being parsed—in most
typical applications, usually lexical tokens, ASCII or Unicode characters, as mentioned—and
the type variable ’b stands for the return type of the parser. For instance, a combinator
that parses lists of characters and returns an integer would have type (char, int) parser,
whereas a parser that parser lists of tokens to produce a boolean value would have type
(token, bool) parser for some token type, token.

A parser can be “run”, or “executed” on a list of characters by simply unwrapping it, and
applying the underlying parsing function to produce a set of results:

definition run :: ( ′a, ′b) parser ⇒ ′a list ⇒ ( ′a list × ′b) set where
run p xs ≡ case p of Parser f ⇒ f xs

There exist two very simple but very important parsers: the parser that always succeeds, and
the parser that always fails. The parser that always fails is the simpler of the two, so we
consider that parser first. No matter what its input, this parser always returns an empty set
of results. This can be modelled easily in Isabelle/HOL, as follows:

definition fail :: ( ′a, ′b) parser where
fail ≡ Parser (λxs. {})

The parser that always succeeds is a little more complex. For every list of characters to parse,
this parser will simply return a singleton set containing that list as its continuation. The
parser cannot invent a value to return—as we are parametric in the type of values, so have no
idea how to obtain a defined element of type ’b—so we must pass it one explicitly, instead:

definition succeed :: ′b ⇒ ( ′a, ′b) parser where
succeed x ≡ Parser (λxs. {(xs, x )})

Lastly, we consider how to make choices when parsing, which is useful: for instance, in a
programming language a number may either be deemed to be a finite list of digits or a
finite list of digits preceded by a negation sign. This sort of choice can easily be captured
as a higher-order function (or combinator), which we call choice. The combinator takes
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two parsers as arguments and produces another parser as a result, and produces its resulting
parser by simply running both argument parsers on the parser’s input and collecting together
all results using the set union operator:

definition choice :: ( ′a, ′b) parser ⇒ ( ′a, ′b) parser ⇒ ( ′a, ′b) parser (infixr ⊕ 65 ) where
choice p1 p2 ≡ Parser (λxs. run p1 xs ∪ run p2 xs)

2.1 Slightly more complex combinators

Aside from failure, success, and choice, there are some other commonly reoccurring patterns
that you may notice are common to many parsing tasks, and can therefore be factored out
into a series of reusable combinators.

In particular, when parsing we often want to indicate that the string being parsed must have
an exact form. This is especially true when parsing keywords or other syntactic elements in
a programming language, for instance. The following combinator, satisfy, takes a predicate
on characters and produces a parser. This resulting parser fails if its input is empty, or else
if the supplied predicate does not hold on the first character of its input list. Otherwise it
succeeds, returning a singleton set containing the head of the input list as its value, and the
tail of the input list as its continuation:

definition satisfy :: ( ′a ⇒ bool) ⇒ ( ′a, ′a) parser where
satisfy p ≡

Parser (λxs.
case xs of

[] ⇒ {}
| x#xs ⇒ if p x then {(xs, x )} else {})

Admittedly, this combinator is not very interesting on its own. Rather, it is a combinator that
can be used to derive more interesting combinators. For instance, parsing an exact character
is now straightforward using the satisfy combinator:

definition exact :: ′a ⇒ ( ′a, ′a) parser where
exact x ≡ satisfy (λy . y = x )

Below, we will also see another combinator, exacts, which allows us to parse an entire string
of characters exactly, rather than a single one, which also uses exact as a subprocedure.

Previously, we discussed a parser combinator that captured a notion of “choice”. Another
important concept when parsing is sequencing: often we wish to parse a keyword immediately
followed by an identifier, or something similar. This is a simple notion of sequencing, but
sometimes the pattern of sequencing can be more complex. For example, we may wish to
parse a number and then parse different things depending on whatever number we obtained
from that initial parse. This is especially true when parsing binary file formats, for instance,
which often tell you in advance in a header entry at the start of the file how many table
elements of some sort are to follow. This more complex notion of sequencing can be captured
by a parser combinator, called bind. This combinator takes a parser p as an input and a
function f, and returns a new parser as a result. Concretely, f accepts the return value of
p and produces a new parser as a result, capturing this idea that sequencing can branch
depending on the intermediate results of previous parses.
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Exercise (6 marks): complete the definition of bind by replacing the consts declaration
below with a complete definition. Use the type signature of the function to guide you in its
implementation. Make sure you properly thread all of the continuation lists of intermediate
parses through the definition. Some of the properties that you will later prove below may fail
to hold should you get the implementation wrong initially, so you may need to come back
and re-examine your implementation later. You can also use the examples in Section 4 to
test whether your definition is reasonable.

consts bind :: ( ′a, ′b) parser ⇒ ( ′b ⇒ ( ′a, ′c) parser) ⇒ ( ′a, ′c) parser

Now that we have a notion of sequencing together two parsers to produce a new parser, we can
define a combinator that iteratively applies a parser a fixed number of times in sequence—call
it biter. This combinator accepts two arguments—call them m and p—where m is a natural
number indicating the number of times to apply parser p in sequence. Ideally, we would also
like biter to return a list of the elements that it has parsed, too.

Concretely, what should the biter combinator do? If we are iterating zero times, then the
resulting parser should succeed, albeit returning the empty list as its value. Otherwise, if
iterating Succ m times, then we should first parse using p and then immediately after parse
using the m-fold iteration of p, combining the two intermediate results to produce a list as the
final value.

Exercise (3 marks): complete the definition of the biter combinator by replacing the
consts declaration below with a complete definition. Again, use the type signature of the
function to guide you in its definition. Some of the properties that you will later prove below
may fail to hold should you get the implementation wrong initially, so you may need to come
back and re-examine your implementation later.

consts biter :: nat ⇒ ( ′a, ′b) parser ⇒ ( ′a, ′b list) parser

A slightly different, but related notion of iteration, is often useful. Suppose we want to parse
a keyword in a programming language. How can we do that, given the combinators that
we already have? Using the previously discussed exact combinator, we can parse a single
character of the keyword at a time, in sequence, until there are no more characters of the
keyword left to parse. The combinator exacts accepts a list of characters cs to parse one by
one, and as its return value it produces the list of characters that it has parsed.

Exercise (3 marks): complete the definition of the exacts combinator by replacing the
consts declaration below with a complete definition. Again, use the type signature of the
function to guide you in its definition. Some of the properties that you will later prove below
may fail to hold should you get the implementation wrong initially, so you may need to come
back and re-examine your implementation later.

consts exacts :: ′a list ⇒ ( ′a, ′a list) parser

Lastly, suppose we wish to parse numbers for a programming language interpreter we are
writing. One way to do this would be to parse a list of digits, returning a string, and then
take this string and apply a function that maps strings of digits into some numeric type,
returning that as our result. We can capture this pattern using a notion of “mapping”,
similar to the map function on lists from standard functional programming:

definition map :: ( ′a, ′b) parser ⇒ ( ′b ⇒ ′c) ⇒ ( ′a, ′c) parser where
map p f ≡ Parser (λxs. (λx . (fst x , f (snd x ))) ‘ (run p xs))
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3 Some properties of this library

We now prove some important properties of our parser combinators to ensure that they behave
correctly. Many of these properties can be expressed as equivalences between parsers. But
first, we must define what it means for two parsers to be equivalent, or equal.

3.1 Equivalence of parsers

What is a suitable notion of equivalence for parsers? Recall that parsers are essentially func-
tions in disguise, and as you know functions are equal when they agree on all inputs. Two
parsers should therefore be considered equivalent when executing them both on the same
arbitrary input leads to the same result.

Exercise (2 marks): define a binary relation peq on parsers that captures when two parsers
are equivalent by replacing the consts declaration below with a complete definition. Some of
the properties that you will later prove below may fail to hold should you get the implemen-
tation wrong initially, so you may need to come back and re-examine your implementation
later.

consts peq :: ( ′a, ′b) parser ⇒ ( ′a, ′b) parser ⇒ bool

We can check that the putative equivalence relation above behaves somewhat correctly by
checking that it is indeed an equivalence relation, i.e. that it is reflexive, symmetric, and
transitive.

Exercise (3 marks, 1 mark each): prove that peq is reflexive, symmetric, and transitive
by stating and proving three relevant lemmas.

3.2 Parsers have a commutative monoidal structure under choice

Now we have a notion of parser equivalence, we can state and prove some interesting properties
of our combinators. First, we examine how choice and the always-failing parser, fail,
interact. It should be intuitively obvious that fail acts as a neutral (or identity) element for
the choice combinator.

Exercise (2 marks, 1 mark each): prove that fail is a left- and right-neutral element
for choice by proving the following two lemmas. That is, replace the oops commands below
with complete proofs.

lemma choice-ident-fail1 :
shows peq (fail ⊕ p1 ) p1
oops

lemma choice-ident-fail2 :
shows peq (p1 ⊕ fail) p1
oops

Moreover, it should be obvious that choice is commutative and associative—it does not and
should not matter in which order you choose to apply parsers under the choice combinator,
as the choice combinator simply collects together all possible parses in one big set.
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Exercise (2 marks, 1 mark each): prove that choice is commutative and associative by
proving the following two lemmas. That is, replace the oops commands below with complete
proofs.

lemma choice-comm:
shows peq (p1 ⊕ p2 ) (p2 ⊕ p1 )
oops

lemma choice-assoc:
shows peq (p1 ⊕ (p2 ⊕ p3 )) ((p1 ⊕ p2 ) ⊕ p3 )
oops

3.3 Map is functorial, and has an alternative definition

The familiar “map” function on lists enjoys a number of properties. A few of these properties
are particularly important, namely:

• mapping the identity function id over a list results in the same list,

• mapping the composition of two functions, f ◦ g, over a list is the same as first mapping
g over that list followed by mapping f over the resulting list.

These two properties taken together are sometimes known as “functoriality”, and a great
number of similar “map” functions on different types possess them. Indeed, the map function
that we have defined on parsers also possesses these functoriality properties.

Exercise (1 mark): show that mapping the identity function over a parser p is equivalent
to p by stating and proving a relevant lemma.

Exercise (3 marks): show that mapping the composition of two functions over a parser is
equivalent to first mapping one function, and then the other, over that same parser by stating
and proving a relevant lemma.

Earlier we gave a direct definition of map in terms of the set image function. It was rather
“low level”, requiring us to deal directly with the underlying representation of parsers. In
fact, having defined the bind and succeed combinators already, it was already possible to
give an alternative definition of map in terms of those operations that did not require us to
deal directly with the underlying representation of parsers.

Exercise (2 marks): show that map can be given an alternative definition in terms of the
bind and succeed combinators by proving the following lemma. That is, replace the oops

command below with a complete proof.

lemma map-alternative-def :
shows peq (map p f ) (bind p (λx . succeed (f x )))
oops

3.4 Bind and succeed satisfy the monad laws (and other properties)

Next, we examine how the bind and succeed combinators interact with each other. First,
we show that succeed acts as a right-neutral element for bind.
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Exercise (1 mark): show that succeed is a right-neutral element for bind by stating and
proving a relevant lemma.

Moreover, succeed also acts as a kind of left-neutral element for bind, albeit in a slightly
messier way than for the right-neutral case. As a result, I will provide the lemma statement.

Exercise (1 mark): show that succeed is a left-neutral element for bind by proving the
following lemma. That is, replace the oops command below with a complete proof.

lemma bind-succeed-collapse:
shows peq (bind (succeed x ) f ) (f x )

oops

The bind combinator also exhibits a kind of “associativity” property which allows one to re-
arrange a series of nested applications of bind from being left-associative to right-associative.
Again, this is a rather messy property, so I will provide the lemma statement to prove.

Exercise (1 mark): show that bind has an associativity property by proving the following
lemma. That is, replace the oops command below with a complete proof.

lemma bind-assoc:
shows peq (bind (bind p f ) q) (bind p (λx . bind (f x ) q))
oops

(The previous three properties are sometimes referred to as the “monad laws”, and hold for
many useful parameterised types that appear naturally in functional programming with suit-
able definitions for bind and succeed. For example: lists, sets, the option type, continuations,
and so on, all possess the three properties above for suitably chosen implementations of bind
and succeed specific to each type.)

The bind combinator also satisfies some other properties not captured by the monad laws.
In particular, it interacts well with the always-failing parser, fail, and in fact fail is a left-
annihilating element for bind. Intuitively, that is: if you first fail to parse anything, and then
try to parse something else, you will always fail.

Exercise (1 mark): show that fail is a left-annihilating element for bind by proving the
following lemma. That is, replace the oops command below with a complete proof.

lemma bind-fail-annihil :
shows peq (bind fail f ) fail
oops

In addition, the bind and choice combintors also interact well, and one may factor bind

through the choice combinator freely.

Exercise (1 mark): show bind can be factored through the choice combinator by proving
the following lemma. That is, replace the oops command below with a complete proof.

lemma bind-choice-split :
shows peq (bind (p ⊕ q) f ) (bind p f ⊕ bind q f )
oops

Lastly, bind has a rather strong interpolation property that not all parameterised types that
satisfy the monad laws possess (though others, such as the familiar option type do possess a
very similar property).
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Exercise (8 marks): show that bind exhibits an interpolation property by proving the
following lemma. That is, replace the oops command below with a complete proof.

lemma bind-interpolate:
assumes run (bind p f ) xs = ps
shows ∃ qs. run p xs = qs ∧ ((

⋃
(q , r)∈qs. run (f r) q) = ps)

oops

3.5 Properties of iteration

In a final pair of exercises, we address properties of the iteration combinators that we defined
previously.

First, we show that iterating a parser m+ n times is the same as iterating a parser m times
followed by iterating a parser n times, before succeeding with the append of the two results.

Exercise (5 marks): show that this property holds of the biter combinator by proving the
following lemma. That is, replace the oops command below with a complete proof.

lemma biter-plus-bind :
shows peq (biter (m+n) p) (bind (biter m p) (λxs. bind (biter n p) (λys. succeed (xs@ys))))

oops

A very similar property holds of the combinator exacts. If we try to exactly parse a keyword
xs appended to another keyword ys, then this should be the same as exactly parsing xs

followed by exactly parsing ys, succeeding with the append of the two intermediate results
as the return value.

Exercise (5 marks): show that this analogous described property holds for the exacts

combinator by stating and proving a relevant lemma.

4 Example: parsing a fragment of English

This section is non-assessed, and is included to provide a motivating example, so that you can
gain some intuition for what the definitions should do, and as a testing ground for you to use
to ensure that your definitions are correct. In particular, we will use our small combinator
library to parse a tiny (but ambiguous) fragment of English.

The following command is used to set up the “monadic do”-syntax, which allows us to write
repeated binds as a “do block” in the form do { ...}. This command can be safely ignored,
as it only makes the rest of the material below easier to read.

adhoc-overloading Monad-Syntax .bind bind

First, we define a small utility combinator that exactly parses an arbitrary character from a
supplied set of characters. This will be used below.

definition one-of :: ′a set ⇒ ( ′a, ′a) parser where
one-of ss ≡ satisfy (λx . x ∈ ss)

Next, we give ourselves a supply of common English nouns, verbs, transitive verbs, and
determinants. These are the basic building blocks of the sentences that we will try to parse.
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Note here that the English word “loves” is classed as both a transitive verb and a plain verb,
indicating a degree of ambiguity when parsing is to be expected.

definition nouns :: string set where
nouns ≡ { ′′man ′′, ′′woman ′′, ′′child ′′}

definition verbs :: string set where
verbs ≡ { ′′runs ′′, ′′walks ′′, ′′loves ′′}

definition transitive-verbs :: string set where
transitive-verbs ≡ { ′′likes ′′, ′′loves ′′}

definition determinants :: string set where
determinants ≡ { ′′a ′′, ′′the ′′, ′′some ′′, ′′every ′′}

A noun phrase in English is a determinant followed by a noun. Note that the sequencing
between the two is expressed using bind, albeit hidden beneath the do { ... } syntax.

definition noun-phrase :: (string , string list) parser where
noun-phrase ≡

do
{ d ← one-of determinants
; n ← one-of nouns
; succeed [d , n]
}

An alternative, much less readable rendering of noun phrase above, which does not use the
do { ... } syntax is:

definition noun-phrase ′ :: (string , string list) parser where
noun-phrase ′ ≡ bind (one-of determinants) (λd . bind (one-of nouns) (λn. succeed [d , n]))

From this, it should be intuitively clear how a do-block is translated into nested binds.

A verb phrase in English is either a verb, or a transitive verb followed by a noun phrase. Note
here that this example uses both choice and sequencing.

definition verb-phrase :: (string , string list) parser where
verb-phrase ≡

(do
{ v ← one-of verbs
; succeed [v ]
}) ⊕
(do
{ t ← one-of transitive-verbs
; n ← noun-phrase
; succeed (t#n)
})

Lastly, a sentence in our English-language fragment is a noun phrase followed by a verb
phrase.
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definition sentence :: (string , string list) parser where
sentence ≡

do { n ← noun-phrase
; v ← verb-phrase
; succeed (n@v)
}

Note in all cases above, when parsing a fragment of English, our parsers return the words (or
a list of them) that were parsed as their return value. We can now test our parsers, to make
sure they are behaving as expected. First, some sentences that should be successfully parsed:

value run sentence [ ′′some ′′, ′′man ′′, ′′likes ′′, ′′the ′′, ′′woman ′′]
value run sentence [ ′′some ′′, ′′child ′′, ′′walks ′′]

Ambiguous sentences should also work fine. Note that all parses should be returned, and the
continuation lists should look “correct”:

value run sentence [ ′′some ′′, ′′woman ′′, ′′loves ′′, ′′a ′′, ′′child ′′]

Multiple sentences can be parsed using iteration. Here we parse two consecutive sentences.
Again all possible parses of the sentences should be returned:

value run (biter 2 sentence) [ ′′some ′′, ′′woman ′′, ′′loves ′′, ′′a ′′, ′′child ′′,
′′every ′′, ′′man ′′, ′′loves ′′, ′′a ′′, ′′child ′′]

Here is a parse that should fail (that is, return an empty list of results):

value run sentence [ ′′some ′′, ′′man ′′, ′′hates ′′, ′′a ′′, ′′horse ′′]

Note that none of these examples will properly evaluate to a set of value-continuation pairs
until you supply correct definitions in the exercises above.

end
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