L11: Algebraic Path Problems with applications to Internet Routing Lecture 3

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2017

		□ ▷ ∢ ⓓ ▷ I		4) Q (~
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica		I.G.Griffin@2017	1/25

Bi-semigroups and Pre-Semirings

(S, \oplus, \otimes) is a bi-semigroup when								
• (S, \oplus) is a semigroup								
• (S, \otimes) is a semigroup								
(S, \oplus, \otimes) is a pre-semiring when								
• (S, \oplus, \otimes) is a bi-semigroup								
• \oplus is commutative								
and left- and right-distributivity hold,								
$ \begin{array}{rcl} \mathbb{LD} & : & a \otimes (b \oplus c) & = & (a \otimes b) \oplus (a \otimes c) \\ \mathbb{RD} & : & (a \oplus b) \otimes c & = & (a \otimes c) \oplus (b \otimes c) \end{array} $								

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when
 - (S, \oplus, \otimes) is a pre-semiring
 - $(S, \oplus, \overline{0})$ is a (commutative) monoid
 - $(S, \otimes, \overline{1})$ is a monoid
 - $\overline{0}$ is an annihilator for \otimes

	4	다 사람 사람 사람 사람	臣	596
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with application of the second sec	T.G.Griffin©	2017	3 / 25

Examples

Pre-sem	irings	5				
name	S	⊕,	\otimes	$\overline{0}$	1	
min_plus	s ℕ	min	+		0	-
max_min	n ℕ	max	min	0		
Semiring)S					
name	S	\oplus ,	\otimes	$\overline{0}$	1	

sp	\mathbb{N}_∞	min	+	∞	0		
bw	\mathbb{N}_∞	max	min	0	∞		

Note the sloppiness — the symbols +, max, and min in the two tables represent different functions....

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How about (max, +)?

F	Pre-semiri	ng				
	name	S	⊕,	\otimes	$\overline{0}$	1
_	max_plus	\mathbb{N}	max	+	0	0

• What about " $\overline{0}$ is an annihilator for \otimes "? No!

Fix that						
name	S	\oplus ,	\otimes	ō	1	
max_plus ^{$-\infty$}	$\mathbb{N} \triangleq \{-\infty\}$	max	+	$-\infty$	0	

	4	ロト・日本・モト・モー	$\mathcal{O}\mathcal{Q}\mathcal{O}$
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin©2017	5 / 25

Stability

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

 $a \in S$, define powers a^k

$$\begin{array}{rcl} a^0 & = & \overline{1} \\ a^{k+1} & = & a \otimes a^k \end{array}$$

Closure, a*

$$a^{(k)} = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k$$

 $a^* = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots$

Definition (q stability)

If there exists a *q* such that $a^{(q)} = a^{(q+1)}$, then *a* is *q*-stable. By induction: $\forall t, 0 \leq t, a^{(q+t)} = a^{(q)}$. Therefore, $a^* = a^{(q)}$.

・ロト ・回 ト ・ヨト ・ヨト - ヨ

nan

Matrix Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

$\mathbb{M}_n(S)$ is a semiring!

Note : we only needed left-distributivity on S.

	< 🗆	•	• 🗗 •	${\bf e} \equiv {\bf e}$	< ≣ >	E.	$\mathcal{O}\mathcal{Q}\mathcal{O}$
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica			T.G.Gr	riffin©201	17	8 / 25

Matrix encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p = i_1, i_2, i_3, \cdots, i_k$ is

$$w(p) = w(i_1, i_2) \otimes w(i_2, i_3) \otimes \cdots \otimes w(i_{k-1}, i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} \mathbf{w}(i, j) & \text{if } (i, j) \in E, \\ \overline{\mathbf{0}} & \text{otherwise} \end{cases}$$

The general problem of finding globally optimal path weights

Given an adjacency matrix **A**, find
$$\mathbf{A}^*$$
 such that for all $i, j \in V$

$$\mathbf{A}^*(i, j) = \bigoplus_{\mathbf{p} \in \pi(i, j)} \mathbf{w}(\mathbf{p})$$

where $\pi(i, j)$ represents the set of all paths from *i* to *j*.

How can we solve this problem?

tgg22 (cl.cam.ac.uk)

SQA

10 / 25

Matrix methods

tgg22 (cl.cam.ac.uk)

Matrix methods can compute optimal path weights

L11: Algebraic Path Problems with applica

- Let $\pi(i, j)$ be the set of paths from *i* to *j*.
- Let $\pi^k(i,j)$ be the set of paths from *i* to *j* with exactly *k* arcs.
- Let $\pi^{(k)}(i, j)$ be the set of paths from *i* to *j* with at most *k* arcs.

heorem
(1)
$$\mathbf{A}^{k}(i, j) = \bigoplus_{\substack{p \in \pi^{k}(i, j) \\ p \in \pi^{(k)}(i, j)}} \mathbf{w}(p)$$

(2) $\mathbf{A}^{(k)}(i, j) = \bigoplus_{\substack{p \in \pi^{(k)}(i, j) \\ p \in \pi(i, j)}} \mathbf{w}(p)$

Warning again: for some semirings the expression $\mathbf{A}^*(i, j)$ might not be well-defeind. Why?

tgg22 (c	l.cam.ac.uk)
----------	--------------

(日)

Sar

T.G.Griffin © 2017

11/25

Proof of (1)

By induction on k. Base Case: k = 0.

$$\pi^{\mathbf{0}}(i, i) = \{\epsilon\},\$$

so $\mathbf{A}^{\mathbf{0}}(i, i) = \mathbf{I}(i, i) = \overline{\mathbf{1}} = \mathbf{w}(\epsilon).$

And $i \neq j$ implies $\pi^0(i, j) = \{\}$. By convention

$$\bigoplus_{\boldsymbol{p}\in\{\}} \boldsymbol{w}(\boldsymbol{p}) = \overline{\mathbf{0}} = \mathbf{I}(i, j).$$

	4	□ ► ◀ 🗗 ►	 ▲ 프 ► < 프 ► 	∎ १९९
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica		T.G.Griffin ©2017	13 / 25

Proof of (1)

Induction step.

$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^{k})(i, j)$$

$$= \bigoplus_{\substack{1 \leq q \leq n}} \mathbf{A}(i, q) \otimes \mathbf{A}^{k}(q, j)$$

$$= \bigoplus_{\substack{1 \leq q \leq n}} \mathbf{A}(i, q) \otimes (\bigoplus_{\substack{p \in \pi^{k}(q, j)}} w(p))$$

$$= \bigoplus_{\substack{1 \leq q \leq n \ p \in \pi^{k}(q, j)}} \mathbf{A}(i, q) \otimes w(p)$$

$$= \bigoplus_{\substack{(i, q) \in E \ p \in \pi^{k}(q, j)}} w(i, q) \otimes w(p)$$

$$= \bigoplus_{\substack{(i, q) \in E \ p \in \pi^{k}(q, j)}} w(p)$$

Fun Facts

Fact 3

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Fact 4

If *S* is 0-stable, then $\mathbb{M}_n(S)$ is (n-1)-stable. That is,

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Why? Because we can ignore paths with loops.

 $(a \otimes c \otimes b) \oplus (a \otimes b) = a \otimes (\overline{1} \oplus c) \otimes b = a \otimes \overline{1} \otimes b = a \otimes b$

Think of *c* as the weight of a loop in a path with weight $a \otimes b$.

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$

Note that the longest shortest path is (1, 0, 2, 3) of length 3 and weight 7.

16 / 25

(min,+) example

Our theorem tells us that $\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{A}^{(4)}$

$$\mathbf{A}^{*} = \mathbf{A}^{(4)} = \mathbf{I} \min \mathbf{A} \min \mathbf{A}^{2} \min \mathbf{A}^{3} \min \mathbf{A}^{4} = \begin{bmatrix} 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 3 & 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

		▶ ▲ 문 ▶ ▲ 문 ▶ _ 3	१ २९७
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with application	T.G.Griffin©2017	17 / 25

$(\min,+) \text{ example}$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ \infty & \underline{2} & 1 & 6 & \infty \\ \underline{2} & \infty & 5 & \infty & \underline{4} \\ 1 & 5 & \infty & \underline{4} & 3 \\ 6 & \infty & \underline{4} & \infty & \infty \\ 3 & 4 & \boxed{0} & \boxed{1} & \underline{2} & 3 & 4 \\ 1 & 5 & \infty & \underline{4} & 3 \\ 6 & \infty & \underline{4} & \infty & \infty \\ 0 & \underline{4} & \underline{3} & \infty & \infty \end{bmatrix} \mathbf{A}^{3} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 3 & 7 & 8 & 6 & 5 \\ 8 & \underline{7} & 6 & 11 & 10 \\ 10 & 6 & 5 & 10 & 12 \end{bmatrix}$$
$$\mathbf{A}^{2} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 6 & 4 & \underline{3} & 8 & 8 \\ 7 & \underline{3} & 2 & 7 & 9 \\ 3 & 4 & \boxed{5} & 8 & 7 & 8 & \underline{7} \\ \underline{4} & 8 & 9 & \underline{7} & 6 \end{bmatrix} \mathbf{A}^{4} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 6 & 5 & 10 & 12 \end{bmatrix}$$
First appearance of final value is in red and underlined. Remember: we are looking at all paths of a given length, even those with cycles!

A "better" way — our basic algorithm

$$\begin{array}{rcl} \mathbf{A}^{\langle \mathbf{0} \rangle} &= & \mathbf{I} \\ \mathbf{A}^{\langle k+1 \rangle} &= & \mathbf{A} \mathbf{A}^{\langle k \rangle} \oplus \mathbf{I} \end{array}$$

$$\mathbf{A}^{\langle k \rangle} = \mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

	4	□ ► ◀♬ ►	→ 돌 → → 돌 → _ 돌	$\mathcal{O}\mathcal{Q}\mathcal{O}$
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica		T.G.Griffin ©2017	19 / 25

back to $(\mbox{min},+)$ example

$$\mathbf{A}^{\langle 1 \rangle} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 6 & \infty \\ 2 & 0 & 5 & \infty & 4 \\ 1 & 5 & 0 & 4 & 3 \\ 6 & \infty & 4 & 0 & \infty \\ 3 & 4 & 0 & \infty \\ \infty & 4 & 3 & \infty & 0 \end{bmatrix} \mathbf{A}^{\langle 3 \rangle} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$
$$\mathbf{A}^{\langle 2 \rangle} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 8 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 8 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへぐ

A note on A vs. $\textbf{A} \oplus \textbf{I}$

Lemma

If \oplus is idempotent, then

 $(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}.$

Proof. Base case: When k = 0 both expressions are I. Assume $(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}$. Then

$$(\mathbf{A} \oplus \mathbf{I})^{k+1} = (\mathbf{A} \oplus \mathbf{I})(\mathbf{A} \oplus \mathbf{I})^{k}$$

= $(\mathbf{A} \oplus \mathbf{I})\mathbf{A}^{(k)}$
= $\mathbf{A}\mathbf{A}^{(k)} \oplus \mathbf{A}^{(k)}$
= $\mathbf{A}(\mathbf{I} \oplus \mathbf{A} \oplus \dots \oplus \mathbf{A}^{k}) \oplus \mathbf{A}^{(k)}$
= $\mathbf{A} \oplus \mathbf{A}^{2} \oplus \dots \oplus \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$
= $\mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$
= $\mathbf{A}^{(k+1)}$

	< 🗆	· ► ▲ 🗗 ►	<=> < => < => =	500
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica		T.G.Griffin©2017	21 / 25

Solving (some) equations

Theorem 6.1 If **A** is *q*-stable, then \mathbf{A}^* solves the equations

$$L = AL \oplus I$$

and

 $\mathbf{R} = \mathbf{R}\mathbf{A} \oplus \mathbf{I}.$

For example, to show $\mathbf{L} = \mathbf{A}^*$ solves the first equation:

$$\begin{aligned}
\mathbf{A}^* &= \mathbf{A}^{(q)} \\
&= \mathbf{A}^{(q+1)} \\
&= \mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I} \\
&= \mathbf{A}(\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \ldots \oplus \mathbf{A} \oplus \mathbf{I}) \oplus \mathbf{I} \\
&= \mathbf{A}\mathbf{A}^{(q)} \oplus \mathbf{I} \\
&= \mathbf{A}\mathbf{A}^* \oplus \mathbf{I}
\end{aligned}$$

Note that if we replace the assumption "**A** is *q*-stable" with "**A*** exists," then we require that \otimes distributes over infinite sums.

tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin©2017	22 / 25

A more general result

Theorem Left-Right	h
If A is <i>q</i> -stable, then $\mathbf{L} = \mathbf{A}^* \mathbf{B}$ solves the equation	I
$L = AL \oplus B$	l
and $\mathbf{R} = \mathbf{B}\mathbf{A}^*$ solves	I
$\mathbf{R} = \mathbf{R}\mathbf{A} \oplus \mathbf{B}.$	J

For the first equation:

The "best" solution

Suppose Y is a matrix such that $\mathbf{Y} = \mathbf{AY} \oplus \mathbf{I}$	If A is <i>q</i> -stable and $q < k$, then $\mathbf{Y} = \mathbf{A}^{k}\mathbf{Y} \oplus \mathbf{A}^{*}$
$Y = AY \oplus I$ = $A^{1}Y \oplus A^{(0)}$ = $A((AY \oplus I)) \oplus I$ = $A^{2}Y \oplus A \oplus I$ = $A^{2}Y \oplus A^{(1)}$ $\vdots \vdots \vdots$ = $A^{k+1}Y \oplus A^{(k)}$	$\begin{split} \mathbf{Y} \trianglelefteq_{\oplus}^{L} \mathbf{A}^{*} \\ \text{and if } \oplus \text{ is idempotent, then} \\ \mathbf{Y} \leqslant_{\oplus}^{L} \mathbf{A}^{*} \\ \end{split}$ So \mathbf{A}^{*} is the largest solution. What does this mean in terms of the sp semiring?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example with zero weighted cycles using sp semiring

