
Machine Learning for Language Processing (L101)

Machine Learning for Language Processing
(L101)

Ann Copestake

Computer Laboratory
University of Cambridge

October 2017

Machine Learning for Language Processing (L101)

Outline of today’s lecture

From last time

Smoothing

POS tagging overview

HMMs for POS tagging

Imperfect training data

State-of-the-art in POS tagging

Machine Learning for Language Processing (L101)

From last time

Questions or comments about previous lecture?

Machine Learning for Language Processing (L101)

From last time

Generative models

I NB is a generative model: we train a model of the joint
distribution of observations and classes, P(~f , c).

I Hence, for multinomial NB, this is equivalent to a unigram
model.

I Contrast discriminative models, where we train the
posterior distribution of the class given the observation
P(c|~f)

I Also: discriminant functions — we just train a mapping
from the observation to the class label without the
probability.

Machine Learning for Language Processing (L101)

Smoothing

From last time

I Vocabulary is a list of all words in the documents
(excluding any in a stop list).

I Feature vector ~f for document d : for each item wi in the
vocabulary, generate 1 if wi is in d , 0 otherwise.

I Estimate P(fi |c) as the fraction of documents of class c
that contain wi .

I Estimate P(c) as the proportion of documents which have
class c.

Machine Learning for Language Processing (L101)

Smoothing

However, this doesn’t work . . .

I Zipf’s Law, Heaps’ Law/Herdan’s Law: no matter how
much data we collect (tokens), we will never see all words
(types) of the possible vocabulary.

I Hence, there will be words in the test data that are unseen
in the training data.

I For these, P(fi |c) will be estimated as 0.
I Set vocabulary to be only the words in the training data?
I But what about words which only appear in one category in

the training data?
I Is there really a zero probability they should appear in

another category?
I Multiplication in NB means even strong evidence from other

words could be ignored.

Machine Learning for Language Processing (L101)

Smoothing

However, this doesn’t work . . .

I Zipf’s Law, Heaps’ Law/Herdan’s Law: no matter how
much data we collect (tokens), we will never see all words
(types) of the possible vocabulary.

I Hence, there will be words in the test data that are unseen
in the training data.

I For these, P(fi |c) will be estimated as 0.
I Set vocabulary to be only the words in the training data?
I But what about words which only appear in one category in

the training data?
I Is there really a zero probability they should appear in

another category?
I Multiplication in NB means even strong evidence from other

words could be ignored.

Machine Learning for Language Processing (L101)

Smoothing

Additive smoothing

I In Bayesian terms, need a prior distribution (before we look
at the training data).

I Simplest option: assume a uniform probability for each
word in a vocabulary for each category.

I additive smoothing / Laplace smoothing: add a small
pseudocount α to each count:

I add-one smoothing: α = 1:

P̂(fi |c) =
count(wi , c) + 1

(
∑

w∈V count(w , c)) + |V |

where V is the vocabulary (i.e., feature vector dimension)

Machine Learning for Language Processing (L101)

Smoothing

Additive smoothing, continued

I We don’t smooth P̂(c) — why not?
I α is a hyperparameter: determine optimum value

experimentally (on development data). Although not strictly
allowed if we view this as a prior!

I Choice of V? What do we allow ourselves to know? Can
we ‘just learn from data’?

I Ristad (1995). Friedman and Singer (1999): hierarchical
prior, works for unbounded alphabets.

Machine Learning for Language Processing (L101)

POS tagging overview

POS tagging

They can fish.
I They_PNP can_VM0 fish_VVI ._PUN

Lower ranked:
I They_PNP can_VVB fish_NN2 ._PUN
I They_PNP can_VM0 fish_NN2 ._PUN no full parse

tagset (CLAWS 5) includes:
NN1 singular noun NN2 plural noun
PNP personal pronoun VM0 modal auxiliary verb
VVB base form of verb VVI infinitive form of verb

Machine Learning for Language Processing (L101)

POS tagging overview

POS lexicon fragment

they PNP
can VM0 VVB VVI NN1
fish NN1 NN2 VVB VVI

I Lexicon could be acquired from a dictionary/grammar.
I Possible tag sequences could also come from a grammar.
I For ML approach, we want to acquire probabilities of tags

and tag sequences from data.

Machine Learning for Language Processing (L101)

POS tagging overview

Why POS tag?

Not often considered as a task until early 1990s, but much
easier and faster than full parsing:

I Preprocessing before parsing to reduce search space or
for unknown words.

I Simple source of syntactic features for other tasks: e.g.,
named entity recognition (NER).
Sports Direct hit by slide in pound.

I Aiding investigation of language: lexicographers, corpus
linguistics.

Machine Learning for Language Processing (L101)

POS tagging overview

POS tagging problem task specification

I which language? English? Turkish? Japanese?
I tagset?
I genre? newpaper headlines, chemistry texts etc, etc
I errors in the data?

He walked in into the room.
I Accuracy for rare words? rare uses of words?

Nearly all published work is on a limited range of standard
datasets: fairly small, inconsistencies and errors in annotation.
Effect on real task may not correlate well with performance of
POS tagger on standard dataset.

Machine Learning for Language Processing (L101)

HMMs for POS tagging

POS tagging as a ML problem

I Classification of items in a sequence.
I Almost always treated as supervised learning.
I Available training data is somewhat limited: human

annotators require fairly extensive training, annotation
guidelines are lengthy, but inter-annotator agreement can
be good (especially compared to most semantic tasks).

I Decide on (approximate) model, learn probabilities
(efficiently), apply model (efficiently).

Machine Learning for Language Processing (L101)

HMMs for POS tagging

Modelling POS tagging as a ML problem

I HMM: Hidden Markov Model — POS tags are hidden
states.

I transition probabilities and emission probabilities.
I Standard POS tagging uses HMMs in a simplified way:

probabilities taken from annotated corpora (supervised).
I HMMs can be used unsupervised, but performance for

POS tagging isn’t good.
I Efficient application via Viterbi algorithm.
I Basic model must be augmented with smoothing and

treatment of unknown words.

Machine Learning for Language Processing (L101)

HMMs for POS tagging

Assigning probabilities
Estimate the sequence of n tags as the sequence with the
maximum probability, given the sequence of n words:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1)

By Bayes theorem:

P(tn
1 |wn

1) =
P(wn

1 |tn
1)P(tn

1)

P(wn
1)

Tagging a particular sequence of words so P(wn
1) is constant:

t̂n
1 = argmax

tn
1

P(wn
1 |tn

1)P(tn
1)

Machine Learning for Language Processing (L101)

HMMs for POS tagging

Approximations
Bigram assumption: probability of a tag sequence
approximated by the product of the two-tag sequences:

P(tn
1) ≈

n∏
i=1

P(ti |ti−1)

Probability of the word estimated on the basis of its own tag
alone:

P(wn
1 |tn

1) ≈
n∏

i=1

P(wi |ti)

Hence:

t̂n
1 = argmax

tn
1

n∏
i=1

P(wi |ti)P(ti |ti−1)

Machine Learning for Language Processing (L101)

HMMs for POS tagging

More details

I Maximise the overall tag sequence probability — use
Viterbi dynamic programming (details in J+M).

I Actual systems use trigrams — smoothing and backoff are
critical: insufficient data to use 4-grams etc.

I Unseen words.
I Preprocessing: what is a word? formulae etc
I Genre effects: e.g., tag for ‘I’ (chemistry?)

Machine Learning for Language Processing (L101)

HMMs for POS tagging

More details

I Maximise the overall tag sequence probability — use
Viterbi dynamic programming (details in J+M).

I Actual systems use trigrams — smoothing and backoff are
critical: insufficient data to use 4-grams etc.

I Unseen words.
I Preprocessing: what is a word? formulae etc
I Genre effects: e.g., tag for ‘I’ (chemistry?)

Machine Learning for Language Processing (L101)

Imperfect training data

Smoothing for POS tagging

I Some tag sequences are possible but rare, words will not
be seen with all their possible POS tags.

I Use backoff for tag sequences: trigram counts modified by
bigram and unigram counts with appropriate parameter.

I e.g., replace all infrequent words (e.g., count less than 5)
with UNK.

I But: rare tags for frequent words?
I Sometimes zero probabilities are correct:

so tagged as a verb?
determiner followed directly by a verb?

I Lots of experimentation . . .

Machine Learning for Language Processing (L101)

Imperfect training data

Estimating tags for unknown words

I Distribute the probabilities according to the frequence of
open class tags.

I But morphology: e.g., word ending in ‘ing’ can’t be VVD.
I Additional features: incorporating into HMM is messy . . .
I Most languages have much richer morphology than

English, so can make more use of affixes.
I Also: capitalization etc: ‘Bill’ vs ‘bill’, ‘Gates’ vs ‘gates’.

Machine Learning for Language Processing (L101)

State-of-the-art in POS tagging

Improvements to HMMs

I Speed/accuracy trade-off: e.g., ideally want to incorporate
word sequence information:
I have a bad cold . . .
There is a large cold . . .

I Discriminative models better for proper treatment of
additional features (but HMM-based TnT very effective in
practice).

I Bidirectional: HMM maximizes over sequence, but fully
bidirectional is better.

I Character based models: morphology, capitalization etc.
I Until recently, lots of feature engineering.

Machine Learning for Language Processing (L101)

State-of-the-art in POS tagging

POS tagging with LSTMs

Paper by Plank et al (2016), in course readings (details on
LSTMs in lecture 7 or 8):

I Different natural languages, different language families.
I LSTMs can make use of pre-trained embeddings

(unsupervised).
I Performance is close to the likely ceiling, but still quite low

on unseen items in some languages.
I Best LSTM variant clearly better than TnT (c 25%

reduction in error rate), but TnT still better with very limited
training data.

Question to think about again: what is the task?

	From last time
	Smoothing
	POS tagging overview
	HMMs for POS tagging
	Imperfect training data
	State-of-the-art in POS tagging

