
Heuristic Evaluation & Cognitive Walkthrough

Interaction Design

Interaction Design

 Iterative user centered design and development

Requirements gathering

Quick design

Build prototype

Evaluate and refine

requirements

Engineer product

 Ease of learning
 Faster the second time

 Recall
 Remember how to use it next time

 Productivity
 Perform tasks quickly and efficiently

Minimal error rates
 If they do occur, good feedback is given so that the user can recover

 High user satisfaction
 Confident of success

Recap: Usability

 A cost-effective method of usability evaluation that requires
fewer resources and time than formal usability testing

 Cheap
 No special labs or equipment needed

 The more careful you are, the cheaper it is

 Easy to learn
 Can be taught in 2-4 hours

 Fast
 Around a day

Discount Usability Engineering

 Lo-fi prototyping

(looked at previously)

Heuristic Evaluation

 Ten usability heuristics

 Severity ratings

 Performing HE

 Examples

Cognitive Walkthrough

Discount Usability Engineering

Based on The Cognitive Walkthrough: A Practitioner’s Guide”by C. Wharton, J. Rieman, C. Lewis, and
P. Polson, U. of Colorado, Boulder

Heuristic Evaluation

Developed by Jakob Nielsen (from NeilsenNorman group)

Helps find usability problems in a user interface (UI) design
 In already built UI, or sketches

 Small set of evaluators used to examine UI (3-5)
 Each checks for compliance with usability principles - heuristics

 Use multiple evaluators as each will identify different problems

 At the end of the session problems are compiled and used to
inform re-design

Heuristic Evaluation

H.1 visibility of system status

H.2 match between system and real world

H.3 user control and freedom

H.4 consistency and standards

H.5 error prevention

H.6 recognition rather than recall

H.7 flexibility and efficiency of use

H.8 aesthetic and minimalist design

H.9 help users recognize and recover from errors

H.10 help and documentation

Ten Usability Heuristics

1. Pre-evaluation training
 Get evaluators up to speed on domain and scenarios to be used

2. Evaluate
 Evaluators individually use UI according to scenarios

 Go through twice
 Once for overview, second time for detail

3. Collate results

4. Rate severity

5. Feedback into design

Performing Heuristic Evaluation

Combination of
 Frequency of problem

 Persistence of problem

 Impact of problem

Calculate after evaluations are complete
 Each evaluator rates each problem

 Provides an indication of the need for more assessment
and/ or redesign

Severity Ratings (1)

 0 – do not agree that it is a usability problem

 1 – it is a cosmetic problem

 2 – minor usability problem

 3 – major usability problem

 important to fix

 4 – usability catastrophe

 imperative to fix

Severity Ratings (2)

H.1 visibility of system status

H.2 match between system and real world

H.3 user control and freedom

H.4 consistency & standards

H.5 error prevention

H.6 recognition rather than recall

H.7 flexibility and efficiency of use

H.8 aesthetic and minimalist design

H.9 help users recognize and recover from errors

H.10 help and documentation

Ten Usability Heuristics

 Keep users informed about what is going on through
appropriate feedback within reasonable time

 Pay attention to response time
 0.1 sec: no special indicators needed

 1.0 sec: user tends to lose track of data

 10 sec: max. duration for the user to stay focused on 1 action

 for longer delays use progress bars / indicators

H.1 Visibility of System Status

 Speak the users’ language

 Follow real world conventions

 Example: iTunes

H.2 Match to Real World (1)

 Speak the users’ language

 Follow real world conventions

 Example: Photoshop

H.2 Match to Real World (2)

Clearly marked “exits” for mistaken choices

 undo/ redo

Do not force down fixed paths

H.3 User Control and Freedom

Example: Home button

Consistency within and between applications

 e.g. Word, Excel, and PowerPoint all use the same style toolbar
with the same primary menu options

H.4 Consistency & Standards

Example: Adobe Photoshop

What is better than good error messages is a careful design,
which prevents a problem from occurring in the first place

 Example: if PIN is 4 digits, only allow 4 numeric characters

 Example: Google Autocomplete

H.5 Error Prevention

Minimize user’s memory load

Make objects, actions, options, and directions visible or
easily retrievable
 Example: Adobe Photoshop

H.6 Recognition Rather than Recall

Accelerators for experts
 e.g., gestures, keyboard shortcuts

Allow users to tailor frequent
actions
 e.g.,macros

 Support frequent tasks and tasks
with high cognitive load
 e.g., copy & paste

H.7 Flexibility for Efficient Use

Draw the user to focus on the main subject at hand

 Keep the information displayed on the application simple

Categorize repetitive information into relevant sections

H.8 Aesthetic and Minimalist Design

Help users recognize, diagnose, and recover from errors

 error messages in plain language

 precisely indicate the problem

 constructively suggest a solution

H.9 Help Users Recover from Errors

 Easy to search

 Focused on the user’s task (contextual help)

 List concrete steps to carry out

 Not too long

H.10 Help and Documentation

Heuristic Evaluation: Current Trend

Further Reading:
Gómez, Caballero, Sevillano, 'Heuristic Evaluation on Mobile Interfaces: A New Checklist', 2014.

Heuristic evaluation on mobile interfaces

Cannot copy info from one window to another

 Which Heuristics are violated?

 How can the problem be fixed?

Heuristic Evaluation : Example (1)

 Typography uses mix of upper/lower case formats and
fonts

 Which Heuristics are violated?

 How can the problem be fixed?

Heuristic Evaluation : Example (2)

The interface used the string "Save" on the first screen for
saving the user's file but used the string "Write file" on the
second screen.

Which Heuristics are violated?

What is the severity rating?

 Why?

 What is the effect on the user?

Heuristic Evaluation : Example (3)

Discount: benefit-cost ratio of 48 [Nielsen94]

 cost was $10,500 for benefit of $500,000

 how might we calculate this value?

 in-house −> productivity; open market −> sales

 Single evaluator achieves poor results

 only finds 35% of usability problems

 5 evaluators find ~ 75% of usability problems

 why not more evaluators?

Results of Heuristic Evaluation

Adding evaluators costs more

Many evaluators will not find many more problems

Diminishing Returns

problems found benefits / cost

Cheap & quick

 Easy to learn

 Finds a lot of problems

Drawbacks

Not task focused

Not using actual people

Not rigorous

HE Summary

Cognitive Walkthough

Cognitive walkthrough is a task-centered evaluation

 Focuses on real, complete, and representative tasks

Cognitive Walkthough (CW)

Questioning assumptions about what users will be thinking

 Identifying controls that may be missing or hard to find

 Finding places that have inadequate feedback

 Suggesting difficulties users may have with labels or
prompts

Cognitive Walkthough: Why?

 Focuses on problems that users will have when they first
use an interface, without training

Most effective if designers can really create a mental
picture of the actual environment of use

Cognitive Walkthough: Purpose

Not a technique for evaluating the system over time

 e.g., how quickly a user moves from beginner to intermediate

Cognitive Walkthough: Caveat

Prior to doing a walkthrough, you need four things:

1. A description or a prototype of the interface

2. A task description for a representative task

3. A complete list of the actions needed to complete the
task

4. An idea of who the users will be and what kind of
experience they will bring to the job

Preparation

1. Define inputs

2. Get analysts

3. Step through action sequences for each task

4. Record important information

5. Revise user interface (UI)

CW: Step-by-step Guide

Define inputs by answering the following:

 Who are the users?

 What are the tasks?

 What are the action sequences for the tasks?

Have the prototype/ implementation / description of the
interface

Step 1. Define Inputs

 You do not need actual users

 You can evaluate the interface by imagining the
behaviour of entire classes of users, not one unique user

A typical developer can perform cognitive walkthrough

 But they should have a knowledge of cognitive science to
understand people’s limitations

Step 2. Get Analysts

Will users know what to do?

Will users see how to do it?

Will users understand from the feedback whether their
actions are correct or not?

Step 3. Step Through Actions

User knowledge (just before and just after the action)

Assumptions about users

 Side issues and design changes

Credible success or failure story

 i.e., why would a user select or not select the correct action?

Step 4. Record Important Information

 If the user fails to select the right action

 eliminate that action

 prompt user for action

 change other part so user knows that s(he) can try the action

 If the user does not know that the correct action is
available

 make action more obvious

Step 5. Revise the UI (1)

 If the user does not know which action is correct

 label controls based on knowledge of users

 check the sequence of actions - does it make sense?

 If the user can’t tell things are going ok

 give the user feedback, say what happened

Step 5. Revise the UI (2)

 Severe problems - Fairly good, comparable to other
techniques

Content-related problems - Comparable for consistency,
worse for recurrence

 Scope - Finds problems that are more specific rather than
general

Problems CW Finds

Cognitive Walkthrough: Issues

Cannot evaluate every task the user will perform
 Each user may have a different sequence of actions and control
executions

 Each task is evaluated separately
 The cross-task interactions are not identified

A task-free user-centered method is brought in to catch
problems that CW may have missed
 Heuristic evaluation

Assesses learnability (ease of learning) of a user interface

 Identifies specific problems with design

No need for users to get involved

Cognitive Walkthrough: Summary

Goal: Create UML diagram in DIA

CW: A step-by-step Example

Representative Task

1. Put in UML mode

2. Add parent class (Student)
A. Select class tool

B. Draw class onto canvas by clicking

C. Change class name

3. Add name as private String
A. Bring up dialog, click on Attribute tab

B. Click New

C. Enter name

D. Change visibility to Private

E. Click OK

Steps

4. Add public method addCourse (String
parameter)

A. Click on Operations tab

B. Press New

C. Enter method name

D. Click New parameter

E. Enter parameter name (course)

F. Enter parameter type (String)

Steps (cont.ed)

5. Add CSMajor and MathMajor as children

A. Create CSMajor and MathMajor classes, as
above

B. Line them up on the canvas

C. Select Generalization tool

D. Drag mouse from parent class to one child

E. Use Zigzagline to connect to second child

Steps (cont.ed)

User knowledge (just before and just after the action)

Assumptions about users

 Side issues and design changes

Credible success or failure story

 i.e., why would a user select or not select the correct action?

Step 4. Record Important Information

 Screen comes up in database mode

Step 1: UML mode

I’m thinking: I want to create a UML diagram

Action:
• I see a lot of symbols that aren’t UML.
• I look through the menus, don’t see UML.
• Finally notice drop down with Database. I try it. Now I see UML.

Recommendation:
• Highlight the drop down. It could be moved up, but those tools

don’t change. So it makes sense where it is, but it’s mid-screen,
hard to notice.

• Also, add a Diagram Type option to one of the menus, maybe
Select.

Now the UML menu is available.

Step 1: UML mode

I’m thinking: I want to draw a class

Action:
• Scan the symbols. Tool tip for first one says class. I select it.

Recommend:
• Tool tips are effective. Class is first icon, seems reasonable. No

issues with this step.

Now I’ve selected the class tool

Step 2: Add parent class (Student)
Step 2A: Select class tool

I’m thinking: OK, now I want to add Student to my diagram. Do I
click or drag?

Action:
• I click on the canvas.
• Class is added, with name Class.

Recommend:
• This seems clear, no recommendation

Now I’ve added the class to my drawing

Step 2: Add parent class (Student)
Step 2B: Draw class onto canvas by clicking

I’m thinking: I want to change the name to Student.

Action:
• I double-click where it says Class.
• Dialog comes up.
• First text field is Class name. I enter Student. Press OK.
• Class name is changed to Student.

Recommend:
• This seems clear, no recommendation

Now I’ve changed the class name to Student

Step 3: Add name as private String
Steps 3A: Bring up dialog, click Attribute tab

I’m thinking: OK, I want to add my fields. There were a lot of
options on that dialog I just used.

Action:
• I double-click on Student class.
• Dialog appears.
• Checkboxes don’t seem to apply. I notice Attributes (which I

recognize as synonym for fields). Click on Attributes tab.

Recommend:
• Tabs probably OK for experienced users. Would a novice notice?
• Dialog has options I don’t understand (e.g., Attributes visible vs.

Suppress Attributes, Wrap options). Visual representation might
be nice, if tool is for beginners.

Now I’m at the correct dialog

Step 3: Add name as private String
Steps 3B: Click new

I’m thinking: I want to type in the variable info.

Action:
• I try to type in Name: field, but it’s grayed out.
• I consider just typing into the big text box, but that doesn’t seem

right.
• I notice New, figure that’s what I need.
• Click it, I’m able to enter a Name and Press OK.

Recommend:
• We read right-to-left. I would probably put buttons on left side of

text area. Maybe put default text such as “No attributes
defined” in the text area.

Now my attribute is listed, but it has a +

Step 3: Add name as private String
Steps 3B: Change visibility to Private

I’m thinking: I missed something.

Action:
• I bring dialog back up
• Click on name
• I quickly notice Visibility, change to Private

Recommend:
• I would default to Private (that’s normally recommended except

for constants)
• I would move Visibility higher in list, after Type or Value

Now my attribute is listed, but it has a +

Step 4: Add public method addCourse
Steps 4A – 4E

I want to add a method. I know now to look at the tabs. Methods
is not there, but Operations is. Screen operation is similar to
Attributes, so I immediately press New. I then enter the method
Name. I press New under parameters. I enter the Name and Type.

Recommend:
• I would move buttons to left (as with suggestion for Attributes).

Rest seems pretty intuitive.

Now I have a fully defined parent class

Step 5: Add CSMajor and MathMajor as children
Step 5A:

I’m thinking: I know how to create classes, first I need to create the
two children.

Recommend:
• No recommendation

Now I have 3 classes

Step 5: Add CSMajor and MathMajor as children
Step 5B: Line them up on the canvas

I’m thinking: The canvas is like most drawing programs, I can just
click on the objects and move them.

Recommend:
• No recommendation

Now I have 3 classes lined up

Step 5: Add CSMajor and MathMajor as children
Step 5C: Select Generalization tool

I’m thinking: I need to find the tool to draw an inheritance
relationship.

Action:
• Notice that the UML toolbar has a tool in the 2nd row that looks

like generalization. Tool tip confirms.

Recommend:
• No recommendation

Now I have 3 classes and have selected inheritance tool

Step 5: Add CSMajor and MathMajor as children
Step 5D: Drag mouse from parent class to one child

I’m thinking: This looks like a typical drawing tool. I should draw
from the parent to the child.

Action:
• Use tool to draw as expected. As I’m drawing I notice the

connection points on the sides of the classes. Line snaps into
place.

Recommend:
• No recommendation

Now I have 3 classes and one inheritance relationship

Step 5: Add CSMajor and MathMajor as children
Step 5E: Use Zigzagline to connect to second child

I’m thinking: There should be an easy way to connect a second
child.

Action:
• I try to click on existing line, but don’t see any way to extend it to

the 2nd class. I look at other tools at top of program. I notice the
jagged line (tool tip says Zigzagline). Click on that, use to
update drawing. *

Recommend:
• The drawing looks OK, but there doesn’t seem to be any

semantic meaning. It would be great to click on triangle, click
on 2nd child, have the tool generate the line.

* There may be a better way to do this, but I haven’t found it.

forms.google.com

 User: Average laptop/tablet user

 Analysts: YOU

 The task: Create a Google Form
 Actions:

 Make a new form

 Give it a title

 Add three questions: One selector, one short answer, one scale

 Change the background

 Share a link to the form

CW: Example (2) – Google Forms

 BOOK: Preece, J., Rogers, Y. and Sharp, H. Interaction
Design.

 Chapter: Evaluation: Inspections, Analytics & Models

Study Material & Reading

