
Lecture 2: Data structures and Indexing
Information Retrieval

Computer Science Tripos Part II

Helen Yannakoudakis1

Natural Language and Information Processing (NLIP) Group

helen.yannakoudakis@cl.cam.ac.uk

2018

1Based on slides from Simone Teufel and Ronan Cummins
1

helen.yannakoudakis@cl.cam.ac.uk

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Today: The indexer

2

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Today: The indexer

3

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Today: The indexer

4

Definitions

So far, we’ve been talking about words. . .

We call any unique word a type (the is a word type)

We call an instance of a type a token (e.g., 13721 the tokens
in Moby Dick)

We call the type that is included in the IR system’s dictionary
a term (usually a “normalised” type – e.g., case, morphology,
spelling etc.)

Consider the document to be indexed:
to sleep perchance to dream

Here we have 5 tokens, 4 types, 3 terms (latter if we choose to
omit to from the index).

5

Index construction

The major steps in inverted index construction:

Collect the documents to be indexed.

Tokenize the text.

Perform linguistic pre-processing of tokens.

Index the documents that each term occurs in.

6

Overview

1 Data structures and indexing
Posting lists and skip lists
Positional indexes

2 Documents, Terms, and Normalisation
Documents
Terms
Reuter RCV1 and Heap’s Law

Example: index creation by sorting

Term docID Term (sorted) docID
I 1 ambitious 2

did 1 be 2
enact 1 brutus 1
julius 1 brutus 2

Doc 1: caesar 1 capitol 2
I did enact Julius I 1 caesar 1
Caesar: I was killed =⇒ was 1 caesar 2
i’ the Capitol;Brutus Tokenisation killed 1 caesar 2
killed me. i’ 1 did 1

the 1 enact 1
capitol 1 hath 1
brutus 1 I 1
killed 1 I 1
me 1 i’ 1
so 2 =⇒ it 2
let 2 Sorting julius 1
it 2 killed 1

Doc 2: be 2 killed 2
So let it be with with 2 let 2
Caesar. The noble caesar 2 me 1
Brutus hath told =⇒ the 2 noble 2
you Caesar was Tokenisation noble 2 so 2
ambitious. brutus 2 the 1

hath 2 the 2
told 2 told 2
you 2 you 2

caesar 2 was 1
was 2 was 1

ambitious 2 with 2

7

Index creation; grouping step (“uniq”)

Term & doc. freq. Postings list

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

Primary sort by term
(dictionary)

Secondary sort (within
postings list) by document
ID

Document frequency (=
length of postings list):

for more efficient
Boolean searching
for term weighting
(lecture 4)

keep Dictionary in memory

Postings List (much larger)
traditionally on disk

8

Data structures for Postings Lists

Need variable-size postings lists:

On disk:

store as contiguous block without explicit pointers
minimises the size of postings lists and number of disk seeks

In memory:
Linked list

Allow cheap insertion of documents into postings lists (e.g.,
when re-crawling)
Naturally extend to skip lists for faster access (skip pointers /
shortcuts to avoid processing unnecessary parts of the
postings list)

Variable length array

Better in terms of space requirements (no pointers)
Also better in terms of time requirements if memory caches
are used, as they use contiguous memory

9

Optimisation: Skip Lists

Recall basic algorithm

More efficient way?

Yes (given that index doesn’t change too fast)

Augment postings lists with skip pointers (at indexing time)

If skip-list pointer present, skip multiple entries

E.g., after we match 8, 16 < 41: skip to item after skip pointer

Heuristic: for postings lists of length L, use
√
L evenly-spaced

skip pointers

10

Tradeoff Skip Lists

Number of items skipped vs. frequency that skip can be taken

More skips: each pointer skips only a few items, but we can
frequently use it, but many comparisons.

Fewer skips: each skip pointer skips many items, but we can
not use it very often, but fewer comparisons.

Skip pointers used to help a lot, but with modern harware,
they may not.

11

Phrase Queries

We want to answer a query such as [cambridge university] –
as a phrase.

The Duke of Cambridge recently went for a term-long course
to a famous university should not be a match

About 10% of web queries are phrase queries (double-quotes
syntax).

Consequence for inverted indexes: no longer sufficient to store
docIDs in postings lists.

Two ways of extending the inverted index:

biword index
positional index

12

Biword indexes

Index every consecutive pair of terms in the text as a phrase.

Friends, Romans, Countrymen

Generates two biwords:
friends romans

romans countrymen

Each of these biwords is now a dictionary term.

Two-word phrases can now easily be answered.

13

Longer phrase queries

A long phrase like cambridge university west campus can be
broken into the Boolean query

cambridge university AND university west AND west campus

False positives – we need to do post-filtering of hits to identify
subset that actually contains the 4-word phrase.

14

Issues with biword indexes

Why are biword indexes rarely used?

False positives, as noted above

Index blowup due to very large dictionary / vocabulary

Searches for a single term?
Infeasible for more than bigrams

15

Positional indexes

Positional indexes are a more efficient alternative to biword
indexes.

Postings lists in a non-positional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions (offsets)

16

Positional indexes: Example

Query: “to be or not to be”

to, 993427:
< 1: < 7, 18, 33, 72, 86, 231>;

2: <1, 17, 74, 222, 255>;
4: <8, 16, 190, 429, 433>;
5: <363, 367>;
7: <13, 23, 191>;

.>

be, 178239:
< 1: < 17, 25>;

4: < 17, 191, 291, 430, 434>;
5: <14, 19, 101>;

.>

Document 4 is a match – why?
(As always: term, doc freq, docid, offsets)

17

Proximity search

We just saw how to use a positional index for phrase searches.

We can also use it for proximity search.

employment /4 place

Find all documents that contain employment and place within
4 words of each other.

HIT: Employment agencies that place healthcare workers are
seeing growth.

NO HIT: Employment agencies that have learned to adapt
now place healthcare workers.

Note that we want to return the actual matching positions, not
just a list of documents.

18

Proximity intersection

PositionalIntersect(p1, p2, k)

1 answer ←<>
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)

4 then l ← <>

5 pp1 ← positions(p1)

6 pp2 ← positions(p2)

7 while pp1 6= nil

8 do while pp2 6= nil

9 do if |pos(pp1) - pos(pp2)| ≤ k

10 then Add(l, pos(pp2))

11 else if pos(pp2) > pos(pp1)

12 then break

13 pp2 ← next(pp2)

14 while l 6=<> and |l[0] - pos(pp1)| > k

15 do Delete(l[0])

16 for each ps ∈ l

17 do Add(answer, 〈docID(p1), pos(pp1), ps〉)
18 pp1 ← next(pp1)

19 p1 ← next(p1)

20 p2 ← next(p2)

21 else if docID(p1) < docID(p2)

22 then p1 ← next(p1)

23 else p2 ← next(p2)

24 return answer

19

Combination scheme

Biword indexes and positional indexes can be profitably
combined.

Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc

For these biwords, increased speed compared to positional
postings intersection is substantial.

Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.

Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of
26% more space for index.

For web search engines, positional queries are much more
expensive than regular Boolean queries.

20

Overview

1 Data structures and indexing
Posting lists and skip lists
Positional indexes

2 Documents, Terms, and Normalisation
Documents
Terms
Reuter RCV1 and Heap’s Law

Definitions – reminder

We call any unique word a type (the is a word type)

We call an instance of a type a token (e.g., 13721 the tokens
in Moby Dick)

We call the type that is included in the IR system’s dictionary
a term (usually a “normalised” type – e.g., case, morphology,
spelling etc.)

21

Documents

Up to now, to build an inverted index, we assumed that:

We know what a document is.
We can “machine-read” each document
Each token is a candidate for a postings entry.

More complex in reality

22

Parsing a document

Convert byte sequence into a linear sequence of characters, but . . .

We need to determine the correct character encoding

We need to determine format to decode the byte sequence
into a character sequence

MS word, zip, pdf, latex, xml (e.g., &). . .

Each of these is a statistical classification problem

Alternatively we can use heuristics

23

Language

Text is not just a linear sequence of characters (e.g., diacritics
above and below letters in Arabic)

What language is it in?

Writing system conventions?

Documents or their components can contain multiple
languages/format; for instance a French email with a Spanish
pdf attachment

A single index usually contains terms of several languages

24

Indexing granularity

What is the document unit for indexing?

a file in a folder?

a file containing an email thread?

an email?

an email with 5 attachments?

individual sentences?

Answering the question “What is a document?” is not trivial

Precision/recall tradeoff: smaller units raise precision, drop
recall

25

Tokenisation

Given a character sequence (and a defined document unit), we now
need to determine our tokens. . .
. . . but, what are the correct tokens to use?

Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

neill aren’t

oneill arent

o’neill are n’t

o’ neill aren t

o neill
?

?

The choices determine which queries will match.

26

Tokenisation problems: One word or two? (or several)

Hewlett-Packard

State-of-the-art

co-education

the hold-him-back-and-drag-him-away maneuver

data base

San Francisco

Los Angeles-based company

cheap San Francisco–Los Angeles fares

York University vs. New York University

27

Numbers

20/3/91
3/20/91
Mar 20, 1991
B-52
100.2.86.144
(800) 234-2333
800.234.2333

Older IR systems may not index numbers...

... but generally it’s a useful feature.

28

Chinese: No Whitespace

Need to perform word segmentation

Use a lexicon or supervised machine-learning

29

Chinese: Ambiguous segmentation

As one word, means “monk”

As two words, means “and” and “still”

30

Other cases of “no whitespace”: Compounding

Compounding in Dutch, German, Swedish

German

Lebensversicherungsgesellschaftsangestellter
leben+s+versicherung+s+gesellschaft+s+angestellter

31

Other cases of “no whitespace”: Agglutination

“Agglutinative” languages do this not just for compounds:

Inuit

tusaatsiarunnangittualuujunga
(= “I can’t hear very well”)

Finnish

epäjärjestelmällistyttämättömyydellänsäkäänköhän
(= “I wonder if – even with his/her quality of not
having been made unsystematized”)

Turkish

Çekoslovakyalılaştıramadıklarımızdanmşçasına
(= “as if you were one of those whom we could not
make resemble the Czechoslovacian people”)

32

Japanese

Different scripts (alphabets) might be mixed in one language.

Japanese has 4 scripts: kanja, katakana, hiragana, Romanji

no spaces

33

Normalisation – equivalence classes

Need to normalise tokens to get document–query matches

Example: We want to match U.S.A. to USA

We most commonly implicitly define equivalence classes of
terms.

Useful as searches for one term will retrieve documents that
contain either.

Advantage of using mapping rules is that the equivalence
classing to be done is implicit

34

Alternative

Alternatively, we could do asymmetric expansion where we
maintain relations between un-normalized tokens.

Example of asymmetric expansion of query terms that can
usefully model users’ expectations:

window → window, windows
windows → Windows, windows, window
Windows → Windows

Either at query time, or at index time

Potentially more powerful, but less efficient than equivalence
classing

e.g., query expansion dictionary and more processing at
query-time

35

Normalisation: Accents and diacritics

résumé vs. resume

Universität

Meaning-changing in some languages:

peña = cliff, pena = sorrow
(Spanish)

Main question: will users apply it when querying?

36

Normalisation: Case Folding

Reduce all letters to lower case

Even though case can be semantically distinguishing

Fed vs. fed
March vs. march
Turkey vs. turkey
US vs. us

Best to reduce to lowercase because users will use lowercase
regardness of correct capitalisation.

37

Normalisation: More equivalence classing

Thesauri: semantic equivalence, car = automobile

Soundex: phonetic equivalence, Muller = Mueller; lecture 3

38

Lemmatisation

Reduce inflectional/variant forms to base form

am, are, is → be
car, car’s, cars’, cars → car
the boy’s cars are different colours → the boy car be different color

Lemmatisation implies doing “proper” reduction to dictionary
headword form (the lemma)

Inflectional morphology (cutting → cut)

vs. derivational morphology (destruction → destroy)

39

Stemming

Stemming is a crude heuristic process that chops off the ends
of words in the hope of achieving what “principled”
lemmatisation attempts to do with a lot of linguistic
knowledge.

language-specific rules, but fast and space-efficient

does not require a stem dictionary, only a suffix dictionary

Often both inflectional and derivational

automate, automation, automatic → automat

Root changes (deceive/deception, resume/resumption) aren’t
dealt with, but these are rare

40

Porter Stemmer

M. Porter, “An algorithm for suffix stripping”, Program
14(3):130-137, 1980

Most common algorithm for stemming English

Results suggest it is at least as good as other stemmers

Syllable-like shapes + 5 phases of reductions

Phases are applied sequentially

Each phase consists of a set of commands

Of the rules in a compound command, select the top one and
exit that compound (this rule will have affected the longest
suffix possible, due to the ordering of the rules).

41

Stemming: Representation of a word

[C] (VC){m}[V]

C : one or more adjacent consonants
V : one or more adjacent vowels

[] : optionality
() : group operator
{x} : repetition x times
m : the “measure” of a word

shoe [sh]C [oe]V m=0

Mississippi [M]C ([i]V [ss]C)([i]V [ss]C)([i]V [pp]C)[i]V m=3

ears ([ea]V [rs]C) m=1

Notation: measure m is calculated on the word excluding the suffix of
the rule under consideration

42

Porter stemmer: selected rules

SSES → SS
IES → I
SS → SS
S → ∅

caresses → caress
cares → care

(m>0) EED → EE

feed → feed
agreed → agree

BUT: freed, succeed

43

Porter Stemmer: selected rules

(*V*) ED → ∅

plastered → plaster
bled → bled

44

Three stemmers: a comparison

Such an analysis can reveal features that are not easily visible from the
variations in the individual genes and can lead to a picture of expression that is
more biologically transparent and accessible to interpretation.

Porter Stemmer

such an analysi can reveal featur that ar not easili visibl from the variat in the
individu gene and can lead to a pictur of express that is more biolog transpar
and access to interpret

Lovins Stemmer

such an analys can reve featur that ar not eas vis from th vari in th individu
gen and can lead to a pictur of expres that is mor biolog transpar and acces to
interpres

Paice Stemmer

such an analys can rev feat that are not easy vis from the vary in the individ
gen and can lead to a pict of express that is mor biolog transp and access to
interpret

45

Does stemming improve effectiveness?

In general, stemming increases effectiveness for some queries
and decreases it for others.

Example queries where stemming helps

tartan sweaters → sweater, sweaters
sightseeing tour san francisco → tour, tours

Example queries where stemming hurts

operational research → “oper” = operates, operatives, operate,
operation, operational, operative

operating system → operates, operatives, operate, operation,
operational, operative

operative dentistry → operates, operatives, operate, operation,
operational, operative

46

Stop words

Extremely common words which are of little value in helping
select documents matching a user need

a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of,
on, that, the, to, was, were, will, with

Used to be standard in older IR systems.

Need them to search for

to be or not to be
prince of Denmark
bamboo in water

Length of practically used stoplists has shrunk over the years.

Most web search engines do index stop words.

47

Reuters RCV1 collection

Shakespeare’s collected works are not large enough to
demonstrate scalable index construction algorithms.

Instead, we will use the Reuters RCV1 collection.

English newswire articles published in a 12-month period
(1995/6)

N documents 800,000
M terms 400,000
T tokens 100,000,000

48

Effect of pre-processing for Reuters

non-positional positional postings
terms postings (word tokens)

size of dictionary non-positional index positional index
size ∆ cml size ∆ cml size ∆ cml

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2 -2 100,680,242 -8 -8 179,158,204 -9 -9
case folding 391,523 -17 -19 96,969,056 -3 -12 179,158,204 -0 -9
30 stopw’s 391,493 -0 -19 83,390,443 -14 -24 121,857,825 -31 -38
150 stopw’s 391,373 -0 -19 67,001,847 -30 -39 94,516,599 -47 -52
stemming 322,383 -17 -33 63,812,300 -4 -42 94,516,599 -0 -52

∆: reduction in size from the previous line.2

cml: cumulative reduction from “unfiltered”.

2Except for 30 and 150 stopw’s that use “case folding” as their reference
line.

49

How big is the vocabulary?

That is, how many terms are there?

Can we assume there is an upper bound?

Not really: At least 7020 ≈ 1037 different words of length 20.

Vocabulary size M will keep growing with collection size.

Heaps’ law: M = kT b

T is the number of tokens in the collection. Typical values for
the parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5.
Dictionary size continues to increase with more documents
Dictionary size is quite large for large collections

Heaps’ law is linear in log–log space.

It is the simplest possible relationship between collection size
and vocabulary size in log–log space.
Empirical law

50

Heaps’ law for Reuters

Vocabulary size M as a

function of collection size

T (number of tokens) for

Reuters-RCV1. For these

data, the dashed line

log10 M =

0.49 ∗ log10 T + 1.64 is the

best least squares fit.

Thus, M = 101.64T 0.49

and k = 101.64 ≈ 44 and

b = 0.49.

51

Empirical fit for Reuters

Good, as we just saw in the graph.

Example: for the first 1,000,020 tokens, Heaps’ law predicts
38,323 terms:

44× 1,000,0200.49 ≈ 38,323

The actual number is 38,365 terms, very close to the
prediction.

Empirical observation: fit is good in general.

52

Take-away

More complex indexes for phrases

Understanding of the basic unit of classical information
retrieval systems: terms and documents: What is a document,
what is a term?

Tokenization: how to get from raw text to terms (or tokens)

Normalisation and equivalence classes

53

Reading

MRS Chapter 2.2

MRS Chapter 2.3

MRS Chapter 2.4

MRS Chapter 4.3

54

	Data structures and indexing
	Posting lists and skip lists
	Positional indexes

	Documents, Terms, and Normalisation
	Documents
	Terms
	Reuter RCV1 and Heap's Law

