
Hoare logic

Lecture 5: Introduction to separation logic

Jean Pichon-Pharabod

University of Cambridge

CST Part II – 2017/18

Introduction

In the previous lectures, we have considered a language, WHILE,

where mutability only concerned program variables.

In this lecture, we will extend the WHILE language with pointer

operations on a heap, and introduce an extension of Hoare logic,

called separation logic, to enable practical reasoning about

pointers.

1

WHILEp, a language with pointers

Syntax of WHILEp

We introduce new commands to manipulate the heap:

E ::= N | V | E1 + E2 arithmetic expressions

| E1 − E2 | E1 × E2 | · · ·
null

def
= 0

B ::= T | F | E1 = E2 boolean expressions

| E1 ≤ E2 | E1 ≥ E2 | · · ·

C ::= skip | C1;C2 | V := E commands

| if B then C1 else C2

| while B do C

| V := [E] | [E1] := E2

| V := alloc(E0, ...,En)

| dispose(E)
2

The heap

Commands are now evaluated also with respect to a heap that

stores the current values of allocated locations.

Heap assignment, dereferencing, and deallocation fail if the given

locations are not currently allocated.

This is a design choice that makes WHILEp more like a

programming language, whereas having a heap with all locations

always allocated would make WHILEp more like assembly.

It allows us to consider faults, and how separation logic can be

used to prevent faults, and it also makes things clearer.

3

Heap usage commands

Heap assignment command [E1] := E2

• evaluates E1 to a location ` and E2 to a value N, and updates

the heap to map ` to N; faults if ` is not currently allocated.

Heap dereferencing command V := [E]

• evaluates E to a location `, and assigns the value that ` maps

to to V ; faults if ` is not currently allocated.

We could have heap dereferencing be an expression, but then

expressions would fault, which would add complexity.

4

Heap management commands

Allocation assignment command: V := alloc(E0, ...,En)

• chooses n + 1 consecutive unallocated locations starting at

location `, evaluates E0, ...,En to values N0, ...,Nn,

updates the heap to map `+ i to Ni for each i ,

and assigns ` to V .

In WHILEp, allocation never faults.

A real machine would run out of memory at some point.

Deallocation command dispose(E)

• evaluates E to a location `, and deallocates location ` from

the heap; faults if ` is not currently allocated.

5

Pointers

WHILEp has proper pointer operations, as opposed for example

to references:

• pointers can be invalid: X := [null] faults

• we can perform pointer arithmetic:

• X := alloc(0, 1);Y := [X + 1]

• X := alloc(0); if X = 3 then [3] := 1 else [X] := 2

We do not have a separate type of pointers: we use integers as

pointers.

Pointers in C have many more subtleties. For example, in C,

pointers can point to the stack. 6

Pointers and data structures

In WHILEp, we can encode data structures in the heap. For

example, we can encode the mathematical list [12, 99, 37] with the

following singly-linked list:

12 99 37HEAD

In WHILE, we would have had to encode that in integers, for

example as HEAD = 212 × 399 × 537 (as in Part IB Computation

theory).

More concretely:

99 121 12 7 37 0

0 7 8 10 11 121 122

HEAD = 10

7

Operations on mutable data structures

12 99 37HEAD

12 99 37HEADX

99 37HEADX

For instance, this operation deletes the first element of the list:

X := [HEAD + 1]; // lookup address of second element

dispose(HEAD); // deallocate first element

dispose(HEAD + 1);

HEAD := X // swing head to point to second element
8

Dynamic semantics of WHILEp

States of WHILEp

For the WHILE language, we modelled the state as a function

mapping program variables to values (integers):

s ∈ Stack
def
= Var→ Z

For WHILEp, we extend the state to be composed of a stack and

a heap, where

• the stack maps program variables to values (as before), and

• the heap maps allocated locations to values.

We have

State
def
= Stack× Heap

9

Heaps

We elect for locations to be non-negative integers:

` ∈ Loc
def
= {` ∈ Z | 0 ≤ `}

null is a location, but a “bad” one, that is never allocated.

To model the fact that only a finite number of locations is

allocated at any given time, we model the heap as a finite

function, that is, a partial function with a finite domain:

h ∈ Heap
def
= (Loc \ {null}) fin→ Z

10

Failure of commands

WHILEp commands can fail by:

• dereferencing an invalid pointer,

• assigning to an invalid pointer, or

• deallocating an invalid pointer.

because the location expression we provided does not evaluate to a

location, or evaluates to a location that is not allocated (which

includes null).

To explicitly model failure, we introduce a distinguished failure

value , and adapt the semantics:

⇓ : P(Cmd× State× ({ }+ State))

We could instead just leave the configuration stuck, but explicit

failure makes things clearer and easier to state.
11

Adapting the base constructs to handle the heap

The base constructs can be adapted to handle the extended state

in the expected way:

E [[E]](s) = N

〈V := E , (s, h)〉 ⇓ (s[V 7→ N], h)

〈C1, (s, h)〉 ⇓ (s ′, h′) 〈C2, (s
′, h′)〉 ⇓ (s ′′, h′′)

〈C1;C2, (s, h)〉 ⇓ (s ′′, h′′)

B[[B]](s) = > 〈C1, (s, h)〉 ⇓ (s ′, h′)

〈if B then C1 else C2, s〉 ⇓ (s ′, h′)

B[[B]](s) = ⊥ 〈C2, s〉 ⇓ (s ′, h′)

〈if B then C1 else C2, (s, h)〉 ⇓ (s ′, h′)

B[[B]](s) = > 〈C , (s, h)〉 ⇓ (s ′, h′) 〈while B do C , (s ′, h′)〉 ⇓ (s ′′, h′′)

〈while B do C , (s, h)〉 ⇓ (s ′′, h′′)

B[[B]](s) = ⊥
〈while B do C , (s, h)〉 ⇓ (s, h) 〈skip, (s, h)〉 ⇓ (s, h)

12

Adapting the base constructs to handle failure

They can also be adapted to handle failure in the expected way:

〈C1, (s, h)〉 ⇓
〈C1;C2, (s, h)〉 ⇓

〈C1, s〉 ⇓ (s ′, h′) 〈C2, (s
′, h′)〉 ⇓

〈C1;C2, (s, h)〉 ⇓

B[[B]](s) = > 〈C1, (s, h)〉 ⇓
〈if B then C1 else C2, (s, h)〉 ⇓

B[[B]](s) = ⊥ 〈C2, (s, h)〉 ⇓
〈if B then C1 else C2, (s, h)〉 ⇓

B[[B]](s) = > 〈C , (s, h)〉 ⇓
〈while B do C , (s, h)〉 ⇓

B[[B]](s) = > 〈C , (s, h)〉 ⇓ (s ′, h′) 〈while B do C , (s ′, h′)〉 ⇓
〈while B do C , (s, h)〉 ⇓

13

Heap dereferencing

Dereferencing an allocated location stores the value at that

location to the target program variable:

E [[E]](s) = ` ` ∈ dom(h) h(`) = N

〈V := [E], (s, h)〉 ⇓ (s[V 7→ N], h)

Dereferencing an unallocated location and dereferencing something

that is not a location lead to a fault:

E [[E]](s) = ` ` /∈ dom(h)

〈V := [E], (s, h)〉 ⇓
@`. E [[E]](s) = `

〈V := [E], (s, h)〉 ⇓

14

Heap assignment

Assigning to an allocated location updates the heap at that

location with the assigned value:

E [[E1]](s) = ` ` ∈ dom(h) E [[E2]](s) = N

〈[E1] := E2, (s, h)〉 ⇓ (s, h[` 7→ N])

Assigning to an unallocated location or to something that is not a

location leads to a fault:

E [[E1]](s) = ` ` /∈ dom(h)

〈[E1] := E2, (s, h)〉 ⇓
@`. E [[E1]](s) = `

〈[E1] := E2, (s, h)〉 ⇓

15

For reference: deallocation

Deallocating an allocated location removes that location from the

heap:

E [[E]](s) = ` ` ∈ dom(h)

〈dispose(E), (s, h)〉 ⇓ (s, h \ {(`, h(`))})

Deallocating an unallocated location or something that is not a

location leads to a fault:

E [[E]](s) = ` ` /∈ dom(h)

〈dispose(E), (s, h)〉 ⇓
@`. E [[E]](s) = `

〈dispose(E), (s, h)〉 ⇓

16

For reference: allocation

Allocating finds a block of unallocated locations of the right size,

updates the heap at those locations with the initialisation values,

and stores the start-of-block location to the target program

variable:

E [[E0]](s) = N0 . . . E [[En]](s) = Nn

∀i ∈ {0, . . . , n}. `+ i /∈ dom(h)

` 6= null

〈V := alloc(E0, . . . ,En), (s, h)〉 ⇓ (s[V 7→ `], h[` 7→ N1, . . . , `+ n 7→ Nn])

Because the heap has a finite domain, it is always possible to pick

a suitable `, so allocation never faults.

17

Attempting to reason about

pointers in Hoare logic

Attempting to reason about pointers in Hoare logic

We will show that reasoning about pointers in Hoare logic is not

practicable.

To do so, we will first show what makes compositional reasoning

possible in standard Hoare logic (without pointers), and then show

how it fails when we introduce pointers.

18

Approximating modified program variables

We can syntactically overapproximate the set of program variables

that might be modified by a command C :

mod(skip) = ∅
mod(V := E) = {V }
mod(C1;C2) = mod(C1) ∪mod(C2)

mod(if B then C1 else C2) = mod(C1) ∪mod(C2)

mod(while B do C) = mod(C)

mod([E1] := E2) = ∅
mod(V := [E]) = {V }

mod(V := alloc(E0, . . . ,En)) = {V }
mod(dispose(E)) = ∅

19

For reference: free variables

The set of free variables of a term and of an assertion is given by

FV (−) : Term→ P(Var)

FV (ν)
def
= {ν}

FV (f (t1, . . . , tn))
def
= FV (t1) ∪ . . . ∪ FV (tn)

and
FV (−) : Assertion→ P(Var)

FV (>) = FV (⊥)
def
= ∅

FV (P ∧ Q) = FV (P ∨ Q) = FV (P ⇒ Q)
def
= FV (P) ∪ FV (Q)

FV (∀v .P) = FV (∃v .P)
def
= FV (P) \ {v}

FV (t1 = t2)
def
= FV (t1) ∪ FV (t2)

FV (p(t1, . . . , tn))
def
= FV (t1) ∪ . . .FV (tn)

respectively. 20

The rule of constancy

In standard Hoare logic (without the rules that we will introduce

later, and thus without the new commands we have introduced),

the rule of constancy expresses that assertions that do not refer to

program variables modified by a command are automatically

preserved during its execution:

` {P} C {Q} mod(C) ∩ FV (R) = ∅
` {P ∧ R} C {Q ∧ R}

This rule is admissible in standard Hoare logic.

21

Modularity and the rule of constancy

This rule is important for modularity, as it allows us to only

mention the part of the state that we access.

Using the rule of constancy, we can separately verify two

complicated commands:

` {P} C1 {Q} ` {R} C2 {S}
and then, as long as they use different program variables, we can

compose them.

For example, if mod(C1) ∩ FV (R) = ∅ and

mod(C2) ∩ FV (Q) = ∅, we can compose them sequentially:

` {P} C1 {Q} mod(C1) ∩ FV (R) = ∅
` {P ∧ R} C1 {Q ∧ R}

` R ∧ Q ⇒ Q ∧ R

` {R} C2 {S} mod(C2) ∩ FV (Q) = ∅
` {R ∧ Q} C2 {S ∧ Q} ` S ∧ Q ⇒ Q ∧ S

` {Q ∧ R} C2 {Q ∧ S}
` {P ∧ R} C1;C2 {Q ∧ S}

22

A bad rule for reasoning about pointers

Imagine we extended Hoare logic with a new assertion, t1 ↪→ t2,

for asserting that location t1 currently contains the value t2, and

extended the proof system with the following (sound) rule:

` {>} [E1] := E2 {E1 ↪→ E2}
Then we would lose the rule of constancy, as using it, we would be

able to derive

` {>} [37] := 42 {37 ↪→ 42} mod([37] := 42) ∩ FV (Y ↪→ 0) = ∅
` {> ∧ Y ↪→ 0} [37] := 42 {37 ↪→ 42 ∧ Y ↪→ 0}

even if Y = 37, in which case the postcondition would require 0 to

be equal to 42.

There is a problem! 23

Reasoning about pointers

In the presence of pointers, we can have aliasing: syntactically

distinct expressions can refer to the same location. Updates made

through one expression can thus influence the state referenced by

other expressions.

This complicates reasoning, as we explicitly have to track

inequality of pointers to reason about updates:

` {E1 6= E3 ∧ E3 ↪→ E4} [E1] := E2 {E1 ↪→ E2 ∧ E3 ↪→ E4}

We have to assume that any location is possibly modified unless

stated otherwise in the precondition. This is not compositional at

all, and quickly becomes unmanageable.

24

Separation logic

Separation logic

Separation logic is an extension of Hoare logic that simplifies

reasoning about pointers by using new connectives to control

aliasing.

The variant of separation logic that we are going to consider,

which is suited to reason about an explicitly managed heap (as

opposed to a heap with garbage collection), is called classical

separation logic (as opposed to intuitionistic separation logic).

Separation logic was proposed by John Reynolds in 2000, and

developed further by Peter O’Hearn and Hongseok Yang around

2001. It is still a very active area of research.

25

Concepts of separation logic

Separation logic introduces two new concepts for reasoning about

pointers:

• ownership: separation logic assertions not only describe

properties of the current state (as Hoare logic assertions did),

but also assert ownership of part of the heap.

• separation: separation logic introduces a new connective for

reasoning about the combination of disjoint parts of the heap.

26

The points-to assertion

Separation logic introduces a new assertion, written t1 7→ t2, and

read “t1 points to t2”, for reasoning about individual heap cells.

The points-to assertion t1 7→ t2

• asserts that the current value that heap location t1 maps to is

t2 (like t1 ↪→ t2), and

• asserts ownership of heap location t1.

For example, X 7→ Y + 1 asserts that the current value of heap

location X is Y + 1, and moreover asserts ownership of that heap

location.

27

The separating conjunction

Separation logic introduces a new connective, the separating

conjunction ∗, for reasoning about disjointedness.

The assertion P ∗ Q asserts that P and Q hold (like P ∧ Q),

and that moreover the parts of the heap owned by P and Q are

disjoint.

The separating conjunction has a neutral element, emp, which

describes the empty heap: emp ∗ P ⇔ P ⇔ P ∗ emp.

28

Examples of separation logic assertions

1. (X 7→ t1) ∗ (Y 7→ t2)

This assertion is unsatisfiable in a state where X and Y refer

to the same location, since X 7→ t1 and Y 7→ t2 would both

assert ownership of the same location.

The following heap satisfies the assertion:

t1 t2X Y

2. (X 7→ t) ∗ (X 7→ t)

This assertion is not satisfiable, as X is not disjoint from itself.

29

Examples of separation logic assertions

3. X 7→ t1 ∧ Y 7→ t2

This asserts that X and Y alias each other and t1 = t2:

t1X Y

30

Examples of separation logic assertions

4. (X 7→ Y) ∗ (Y 7→ X)

X Y

5. (X 7→ t0,Y) ∗ (Y 7→ t1,null)

t0 t1X

Here, X 7→ t0, ..., tn is shorthand for

(X 7→ t0) ∗ ((X + 1) 7→ t1) ∗ · · · ∗ ((X + n) 7→ tn)

31

Example use of the separating conjunction

6. ∃x , y . (HEAD 7→ 12, x) ∗ (x 7→ 99, y) ∗ (y 7→ 37,null)

This describes our singly linked list from earlier:

12 99 37HEAD

32

Semantics of separation logic

assertions

Semantics of separation logic assertions

The semantics of a separation logic assertion P, [[P]], is the set of

states (that is, pairs of a stack and a heap) that satisfy P.

It is simpler to define it indirectly, through the semantics of P

given a store s, written [[P]](s), which is the set of heaps that,

together with stack s, satisfy P.

Recall that we want to capture the notion of ownership:

if h ∈ [[P]](s), then P should assert ownership of any locations in

dom(h).

The heaps h ∈ [[P]](s) are thus referred to as partial heaps, since

they only contain the locations owned by P.

33

Semantics of separation logic assertions

The propositional and first-order primitives are interpreted much

like for Hoare logic:

[[−]](=) : Assertion→ Store→ P(Heap)

[[⊥]](s)
def
= ∅

[[>]](s)
def
= Heap

[[P ∧ Q]](s)
def
= [[P]](s) ∩ [[Q]](s)

[[P ∨ Q]](s)
def
= [[P]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s)
def
= {h ∈ Heap | h ∈ [[P]](s)⇒ h ∈ [[Q]](s)}

...

34

Semantics of separation logic assertions: points-to

The points-to assertion t1 7→ t2 asserts ownership of the location

referenced by t1, and that this location currently contains t2:

[[t1 7→ t2]](s)
def
=

h ∈ Heap

∣∣∣∣∣∣∣∣∣∣∣∣

∃`,N.

[[t1]](s) = ` ∧
` 6= null ∧
[[t2]](s) = N ∧
dom(h) = {`} ∧
h(`) = N

t1 7→ t2 only asserts ownership of location `, so to capture

ownership, dom(h) = {`}.

35

Semantics of separation logic assertions: ∗

Separating conjunction, P ∗ Q, asserts that the heap can be split

into two disjoint parts such that one satisfies P, and the other Q:

[[P ∗ Q]](s)
def
=

h ∈ Heap

∣∣∣∣∣∣∣
∃h1, h2.

h1 ∈ [[P]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1] h2

where h = h1] h2 is equal to h = h1 ∪ h2, but only holds when

dom(h1) ∩ dom(h2) = ∅.

36

Semantics of separation logic assertions: emp

The empty heap assertion only holds for the empty heap:

[[emp]](s)
def
= {h ∈ Heap | dom(h) = ∅}

emp does not assert ownership of any location, so to capture

ownership, dom(h) = ∅.

37

Summary: separation logic assertions

Separation logic assertions not only describe properties of the

current state (as Hoare logic assertions did), but also assert

ownership of parts of the current heap.

Separation logic controls aliasing of pointers by enforcing that

assertions own disjoint parts of the heap.

38

Semantics of separation logic triples

Semantics of separation logic triples

Separation logic not only extends the assertion language, but

strengthens the semantics of correctness triples in two ways:

• they ensure that commands do not fail;

• they ensure that the ownership discipline associated with

assertions is respected.

39

Ownership and separation logic triples

Separation logic triples ensure that the ownership discipline is

respected by requiring that the precondition asserts ownership of

any heap cells that the command might use.

For instance, we want the following triple, which asserts ownership

of location 37, stores the value 42 at this location, and asserts that

after that location 37 contains value 42, to be valid:

` {37 7→ 1} [37] := 42 {37 7→ 42}

However, we do not want the following triple to be valid, because

it updates a location that it is not the owner of:

0 {100 7→ 1} [37] := 42 {100 7→ 1}
even though the precondition ensures that the postcondition is

true! 40

Framing

How can we make this principle that triples must assert ownership

of the heap cells they modify precise?

The idea is to require that all triples must preserve any assertion

that asserts ownership of a part of the heap disjoint from the part

of the heap that their precondition asserts ownership of.

This is exactly what the separating conjunction, ∗, allows us to

express.

41

The frame rule

This intent that all triples preserve any assertion R disjoint from

the precondition, called the frame, is captured by the frame rule:

` {P} C {Q} mod(C) ∩ FV (R) = ∅
` {P ∗ R} C {Q ∗ R}

The frame rule is similar to the rule of constancy, but uses the

separating conjunction to express separation.

We still need to be careful about program variables (in the stack),

so we need mod(C) ∩ FV (R) = ∅.
42

Examples of framing

How does preserving all frames force triples to assert ownership of

heap cells they modify?

Imagine that the following triple did hold and preserved all frames:

{100 7→ 1} [37] := 42 {100 7→ 1}

In particular, it would preserve the frame 37 7→ 1:

{100 7→ 1 ∗ 37 7→ 1} [37] := 42 {100 7→ 1 ∗ 37 7→ 1}

This triple definitely does not hold, since location 37 contains 42 in

the terminal state.

43

Examples of framing

This problem does not arise for triples that assert ownership of the

heap cells they modify, since triples only have to preserve frames

disjoint from the precondition.

For instance, consider this triple which asserts ownership of

location 37:

{37 7→ 1} [37] := 42 {37 7→ 42}

If we frame on 37 7→ 1, then we get the following triple, which

holds vacuously since no initial states satisfies 37 7→ 42 ∗ 37 7→ 1:

{37 7→ 1 ∗ 37 7→ 1} [37] := 42 {37 7→ 42 ∗ 37 7→ 1}

44

Informal semantics of separation logic triples

The meaning of {P} C {Q} in separation logic is thus

• C does not fault when executed in an initial state satisfying

P, and

• if h1 satisfies P, and if when executed from an initial state

with an initial heap h1] hF , C terminates, then the terminal

heap has the form h′1] hF , where h′1 satisfies Q.

This bakes in the requirement that triples must satisfy framing, by

requiring that they preserve all disjoint heaps hF .

45

Formal semantics of separation logic triples

Written formally, the semantics is:

|= {P} C {Q} def
=

(∀s, h. h ∈ [[P]](s)⇒ ¬(〈C , (s, h)〉 ⇓)) ∧
(∀s, h1, hF , s ′, h′. dom(h1) ∩ dom(hF) = ∅ ∧
h1 ∈ [[P]](s) ∧ 〈C , (s, h1] hF)〉 ⇓ (s ′, h′)

⇒ ∃h′1. h′ = h′1] hF ∧ h′1 ∈ [[Q]](s ′))

We then have the semantic version of the frame rule baked in:

If |= {P} C {Q} and mod(C) ∩ FV (R) = ∅, then

|= {P ∗ R} C {Q ∗ R}.

46

Summary

Separation logic is an extension of Hoare logic with new primitives

to enable practical reasoning about pointers.

Separation logic extends Hoare logic with notions of ownership

and separation to control aliasing and reason about mutable data

structures.

In the next lecture, we will look at a proof system for separation

logic, and apply separation logic to examples.

Papers of historical interest:

• John C. Reynolds. Separation Logic: A Logic for Shared

Mutable Data Structures.

47

For reference: failure of expressions

We can also allow failure in expressions:

E [[−]](=) : Exp× Store→ { }+ Z

E [[E1 + E2]](s)
def
=

if ∃N1,N2.
E [[E1]](s) = N1 ∧
E [[E2]](s) = N2

, N1 + N2

otherwise,

E [[E1/E2]](s)
def
=

if ∃N1,N2.

E [[E1]](s) = N1 ∧
E [[E2]](s) = N2 ∧
N2 6= 0

, N1/N2

otherwise,
...

B[[−]] : BExp× Store→ { }+ B
...

48

For reference: handling failures of expressions

E [[E]](s) =
〈V := E , (s, h)〉 ⇓

E [[E]](s) =
〈V := [E], (s, h)〉 ⇓

E [[E1]](s) =
〈[E1] := E2, (s, h)〉 ⇓

E [[E2]](s) =
〈[E1] := E2, (s, h)〉 ⇓

B[[B]](s) =
〈if B then C1 else C2, (s, h)〉 ⇓

B[[B]](s) =
〈while B do C , (s, h)〉 ⇓

E [[E]](s) =
〈dispose(E), (s, h)〉 ⇓

49

For reference: semantics with failure of expressions

The definitions we give work without modifications, because

implicitly, by writing N and `, we assume N 6= and ` 6= .

However, the separation logic rules have to be modified to prevent

faulting of expressions (see next lecture).

50

