
Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 24



Distributional semantics

You shall know a word by the company it keeps—Firth

Consider the following sentences about the rabbit in Alice in Wonderland:

Suddenly a white rabbit with pink eyes ran close by her.

She was walking by the white rabbit who was peeping anxiously into
her face.

The rabbit actually took a watch out of its waistcoat pocket and
looked at it.

‘Oh hush’, the rabbit whispered, in a frightened tone.

The white rabbit read out at the top of his shrill little voice the name
Alice.

We learn a lot about the rabbit from the words in the local context.
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Distributional semantics

You shall know a word by the company it keeps—Firth

So far, we have been discussing grammars with discrete alphabets and
algorithms that have discrete symbols as input.

Many Natural Language Processing tasks require some notion of
similarity between the symbols.

e.g. The queen looked angry. Her majesty enjoyed beheading.

To understand the implication of these sentences we need to know
that the queen and her majesty are similar ways of expressing the
same thing.

Instead of symbols we can represent a word by a collection of key
words from its context (as a proxy to its meaning)

e.g instead of rabbit we could use

rabbit = {white, pink, eyes, voice, read, watch, waistcoat, ...}
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Distributional semantics

You shall know a word by the company it keeps—Firth

But which key words do we include in the collection?

We could look at a ±n-word context window around the target word.

We could select (and weight) keywords based on their frequency in
the window:

rabbit = {the 56, white 22, a 17, was 11, in 10, it 9, said 8, and 8, to 7...}

This would become a little more informative if we removed the
function words:

rabbit ={white 22, said 8, alice 7, king 4, hole 4, hush 3, say 3, anxiously 2...}

queen ={said 21, king 6, shouted 5, croquet 4, alice 4, play 4, hearts 4, head 3... }

cat ={said 19, alice 5, cheshire 5, sitting 3, think 3, queen 2, vanished 2, grin 2...}

This is all just illustrative, we can of course, do this for all words (not
just the characters)— called distributional semantics.
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Distributional semantics

We can replace symbols with vector representations

Two words can be expected to be semantically similar if they have
similar word co-occurrence behaviour in texts.

e.g. in large amounts of general text we would expect queen and
monarch to have similar word co-occurrences.

Simple collections of context words don’t help us easily calculate any
notion of similarity.

A trend in modern Natural Language Processing technology is to
replace symbolic representation with a vector representation

Every word is encoded into some vector that represents a point in a
multi-dimensional word space.

alice croquet grin hurried king say shouted vanished

rabbit 7 0 0 2 4 3 0 1
queen 4 4 0 1 6 1 5 0
cat 5 1 2 0 0 0 0 2
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Distributional semantics

We can replace symbols with vector representations

Note that there is an issue with polysemy (words that have more than
one meaning):

E.g. we have obtained the following vector for cat:

cat = [5, 1, 2, 0, 0, 0, 0 2]

But cat referred to two entities in our story:

I wish I could show you our cat Dinah

I didn’t know that Cheshire cats always grinned in fact I didn’t know
that cats could grin
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Similarity

The vector provides the coordinates of point/vector in the
multi-dimensional word space.

Assumption: proximity in word space correlates with similarity in
meaning

Similarity can now be measured using distance measures such as
Jaccard, Cosine, Euclidean...
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e.g. cosine similarity

cosine(v1, v2) = v1·v2
‖v1‖‖v2‖

Equivalent to dot product of
normalised vectors (not affected
by magnitude)

cosine is 0 between orthogonal
vectors

cosine is 1 if v1 = αv2, where
α > 0
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Dimensionality reduction

Automatically derived vectors will be very large and sparse

In certain circumstances we might select dimensions expertly

For general purpose vectors we want to simply count in a large
collection of texts, the number of times each word appears inside a
window of a particular size around the target word.

This leads to very large sparse vectors (remember Zipf’s law)

There are an estimated 13million tokens for the English language—we
can reduce this a bit by removing (or discounting) function words,
grouping morphological variants (e.g, grin, grins, grinning)

Is there some k-dimensional space (such that k << 13million) that
is sufficient to encode the word meanings of natural language?

Dimensions might hypothetically encode tense (past vs. present vs.
future), count (singular vs. plural), and gender (masculine vs.
feminine)...
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Dimensionality reduction

It is possible to reduce the dimensions of the vector

To find reduced dimensionality vectors (usually called word embeddings)

Loop over a massive dataset and accumulate word co-occurrence
counts in some form of a large sparse matrix X (dimensions n x n
where n is vocabulary size)

Perform Singular Value Decomposition on X to get a USV T

decomposition of X .
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Dimensionality reduction

It is possible to reduce the dimensions of the vector

Note S matrix has diagonal entries only.

Cut diagonal matrix at index k based on desired dimensionality (can
be decided by desired percentage variance): (

∑k
i=1 si )/(

∑n
i=1 si )
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Use rows of U for the word embeddings.

This gives us a k-dimensional representation of every word in the
vocabulary.
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Dimensionality reduction

It is possible to reduce the dimensions of the vector

Things to note:

Need all the counts before we do the SVD reduction.

The matrix is extremely sparse (most words do not co-occur)

The matrix is very large (≈ 106x106)

SVD is quadratic

Points of methodological variation:

Due to Zipf distribution of words there is large variance in
co-occurrence frequencies (need to do something about this e.g.
discount/remove stop words)

Refined approaches might weight the co-occurrence counts based on
distance between the words
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Predict models

Predict models can be more efficient than count models

word2vec is a predict model, in contrast to the distributional
models already mentioned which are count models.

Instead of computing and storing a large matrix from a very large
dataset, use a model that learns iteratively, eventually encoding the
probability of a word given its context.

- The parameters of the model are the word embeddings.

- The model is trained on a certain objective.

- At every iteration we run our model, evaluate the errors, and then
adjust the model parameters that caused the error.
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Predict models

Predict models can be more efficient than count models

There are two main word2vec architectures:

- Continuous Bag of Words CBOW: given some context word
embeddings, predict the target word embedding.

- Skip-gram: given a target word embedding, predict the context word
embeddings (below).

she helped herself to some tea and bread and butter and

p(wt−m|wt) p(wt+m|wt)
centre word wt
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Predict models

skip-gram model predicts relationship
between a centre word wt and its context
words: p(context|wt) = ...

Predict context word embeddings based on
the target word embedding.

A loss function is used to score the
prediction (usually cross-entropy loss
function).

(Cross-entropy measures the information
difference between the expected word
embeddings and the predicted ones.)

Adjust the word embeddings to minimise
the loss function.

Repeat over many positions of t in a very
big language corpus.

• CBOW: given some context words, predict the target

• Skip-gram: given a target word, predict the contexts

I concentrate on skip-gram here, since it is used more frequently.

The Skip-gram model

The dimensionality of the vectors produced is a parameter of the system: usually the size is a few hundred. The
intuition is that the dimensionality reduction captures meaningful generalizations, but the dimensions are not directly
interpretable: it is impossible to look into ‘characteristic contexts’ as we can with the count models. Of course, the
advantage of the smaller vectors is greater efficiency. As outlined below, there are visualization techniques which
allow one to examine the closeness of different words.
word2vec can be tested on similarity datasets (although note that the hyperparameters have been tuned for high per-
formance on the standard similarity datasets). It can also be used for clustering, as can any model giving a notion of
similarity. Mikolov et al introduced a new task with word2vec: a form of analogy. The idea is that one solve puzzles
such as:

man is to woman as king is to ?

where the correct answer is supposed to be queen. The idea is that one can derive the vector between the pair of words
man and woman and combine it with king, and that the nearest word to the region of vector space that results will be
the answer to the analogy. It should be pointed out that the space is very sparse and that there are many word pairs for
which this does not work (also see Levy et al and Levy and Goldberg for discussion of the appropriate computation
for the task).

One interesting aspect of word2vec training is the use of negative sampling instead of softmax (which is computa-
tionally very expensive). word2vec is trained using logistic regression to discriminate between real and fake words.
In outline, whenever considering a word-context pair, also the network is also given some contexts which are not the
actual observed word. The negative contexts are sampled from the vocabulary (in a manner so that the probability of
sampling something more frequent in the corpus is higher). The number of negative samples used affects the results.
Another interesting aspect is the use of subsampling. Instead of considering all words in the sentence, it is transformed
by randomly removing words from it. For example, the previous sentence might become: considering all sentence

4
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Predict models

Distributional models have improved NLP applications

In general, distributional models have had a positive impact on NLP and
provided improvement over symbolic systems:

There has been a change in state-of-the-art for some applications:
(e.g. Google Translate)

Multi-modal experiments have become more straightforward (by
combining vector representations)

But these models are statistical (need very large amounts of data and
have to find a way to handle unseen words)

There has been a lot of hype and not much work on the problems the
distributional models can’t solve.
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Predict models

Predict models versus count models

+ Predict models can be more efficient than count models because we
can learn iteratively and don’t have to hold statistics on the whole
dataset.

− Need to initialise the word embeddings (several possible methods).

± The size of the embeddings is a chosen parameter of the system
(usually a few hundred).

+ Predict models are learning structure without hand-crafting of
features.

− Dimensionality of the embeddings are assumed to capture meaningful
generalisations, but the dimensions are not directly interpretable.
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Predict models

Predict models versus count models

After training, predict models are found to be equivalent to a count
model with dimensionality reduction.

Tuning hyper-parameters is a matter of much (often brute-force)
experimentation.

Predict models perform better than count models with dimensionality
on some tasks (but perhaps due to tuning hyper-parameters).

For some tasks count vectors without dimensionality reduction are the
most effective.
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Word embeddings and humans

Word embeddings can correlate with human intuitions

Researchers test their word embeddings against datasets of human
similarity judgements:

For a test set of words, participants rate word pairs for relatedness
(e.g. Miller & Charles, Rubenstein & Goodenough)

A rank of relatedness can be drawn up between items in the test set.

A rank correlation between embeddings and human judgements can
be calculated.

Good embeddings have a correlation of 0.8 or better with the human
judgements.
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Word embeddings and humans

Reasoning may be possible based on word embeddings

Mikolov et al. analogy puzzles:

Can we use word embeddings to solve puzzles such as:

man is to woman as king is to .... queen

Can we do vector-oriented reasoning based on the offsets between
words?
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Word embeddings and humans

Reasoning may be possible based on word embeddings

Derive the vector between the pair of words man and woman and
then add it to king.

The nearest word to the region of vector space that results will be the
answer to the analogy.

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
⇢ and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

Mikolov found that word2vec embeddings are good at capturing
syntactic and semantic regularities in language, and that each
relationship is characterised by a relation-specific vector offset.

Note that the space is very sparse and that there are word pairs for
which this does not work...
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Word embeddings and humans

Relationship between embeddings and brain activity?

Humans have the capacity to translate thoughts into words, and to
infer others’ thoughts from their words.

There must be some mental representations of meaning that are
mapped to language, but we have no direct access to these
representations.

encoder
channel
p(y |x) decoderW

mental
representation

X

words

Y

words ′

W ′

mental
representation′

Do word embeddings provide a model that successfully captures some
aspects of our mental representation of meaning?
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Word embeddings and humans

Relationship between embeddings and brain activity?

Natural language appears to be a discrete symbolic system.

The brain encodes information through continuous signals of
activation.

Language symbols are transmitted via continuous signals of
sound/vision.

Pereira et al. trained a system using brain imaging data and word
embeddings.

Demonstrated the ability to generalise to new meanings from limited
imaging data.

https://www.nature.com/articles/s41467-018-03068-4
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Word embeddings and humans

Relationship between embeddings and brain activity?

procedure using the data from each paradigm separately or the
average of the three paradigms.

Decoding performance was evaluated in two ways. The first
was a pairwise classification task where, for each possible pair of
words, we computed the similarity between the decoded vectors
and the “true” (text-derived) semantic vectors (Fig. 2b, right). If
the decoded vectors were more similar to their respective text-
derived semantic vectors than to the alternative, we deemed the
classification correct. The final accuracy value for each participant
is the fraction of correct pairs. The second was a rank accuracy
classification task where we compared each decoded vector to all
180 text-derived semantic vectors, and ranked them by their
similarity (Fig. 2c, right). The classification performance reflects
the rank of the text-derived vector for the correct word: 1 if it is at
the top of the rank, 0 if it is at the bottom, and in-between
otherwise. The final accuracy value for each participant is the
average rank accuracy across the 180 concepts. The null
hypothesis value (chance performance) is 0.5 for both measures,
but the statistical tests are different (see subsection “Statistical
testing of results” in Methods).

We robustly classified left-out concepts for each of 16
participants when using the images averaged across the three

paradigms or when using the picture paradigm, for 10 of the 16
participants when using the sentence paradigm, and for 7 of the
16 participants when using the word cloud paradigm (mean
accuracies: 0.77, 0.73, 0.69, and 0.64; all significant results have p-
values< 0.01, using a conservative binomial test with Bonferroni
correction for the number of participants (16) and experiments
(4); Fig. 4a). The average rank accuracy (when using the images
averaged across the three paradigms) was 0.74 (all significant
results have p-values< 0.01 using a test based on a normal
approximation to the null distribution, with Bonferroni correc-
tion for the number of participants (16) and experiments (3);
results are shown in Fig. 4b, p-values for each subject/task are
provided in Supplementary Table 1).

Experiments 2 and 3 on sentence decoding. Given that experi-
ment 1 demonstrated that our approach could generalize to novel
concepts, we carried out two further experiments to test the
decoding of sentence meanings using stimuli constructed inde-
pendently of the materials in experiment 1 and of each other. In
experiment 2, we used a set of 96 text passages, each consisting of
4 sentences about a particular concept, spanning a broad range of
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Fig. 2 Decoder schematic. a The decoder is trained to take a brain image as input and output the corresponding text semantic vector, for many different
image/vector pairs. b, c The decoder is applied to new brain images and outputs decoded semantic vectors, which are then evaluated against text semantic
vectors. b A pairwise evaluation, which is correct if vectors decoded from two images are more similar to the text semantic vectors for their respective
stimuli than to the alternative. c A rank evaluation, where the decoded vector is compared to the text semantic vectors for a range of stimuli
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