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Languages transmit information

In previous lectures we have thought about language in terms of
computation.

Today we are going to discuss language in terms of the information it
conveys...
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Entropy

Entropy is a measure of information

Information sources produce information as events or messages.

Represented by a random variable X over a discrete set of symbols
(or alphabet) X .

e.g. for a dice roll X = {1, 2, 3, 4, 5, 6} for a source that produces
characters of written English X = {a...z , }
Entropy (or self-information) may be thought of as:

the average amount of information produced by a source
the average amount of uncertainty of a random variable
the average amount of information we gain when receiving a message
from a source
the average amount of information we lack before receiving the message
the average amount of uncertainty we have in a message we are about
to receive
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Entropy

Entropy is a measure of information

Entropy, H, is measured in bits.

If X has M equally likely events: H(X ) = log2M

Entropy gives us a lower limit on:

the number of bits we need to represent an event space.
the average number of bits you need per message code.

avg length =
(3 ∗ 2) + (2 ∗ 3)

5
= 2.4

> H(5) = log2 5 = 2.32
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Surprisal

Surprisal is also measured in bits

Let p(x) be the probability mass function of a random variable, X
over a discrete set of symbols X .

The surprisal of x is s(x) = log2

(
1

p(x)

)
= − log2 p(x)

Surprisal is also measured in bits

Surprisal gives us a measure of information that is inversely
proportional to the probability of an event/message occurring

i.e probable events convey a small amount of information and
improbable events a large amount of information

The average information (entropy) produced by X is the weighted sum
of the surprisal (the average surprise): H(X ) = −

∑
x∈X

p(x) log2 p(x)

Note, that when all M items in X are equally likely (i.e. p(x) = 1
M )

then H(X ) = − log2 p(x) = log2M
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Surprisal

The surprisal of the alphabet in Alice in Wonderland

x f (x) p(x) s(x)

26378 0.197 2.33
e 13568 0.101 3.30
t 10686 0.080 3.65
a 8787 0.066 3.93
o 8142 0.056 4.04
i 7508 0.055 4.16
...
v 845 0.006 7.31
q 209 0.002 9.32
x 148 0.001 9.83
j 146 0.001 9.84
z 78 0.001 10.75

If uniformly distributed:
H(X ) = log2 27 = 4.75

As distributed in Alice:
H(X ) = 4.05

Re. example 1:

Average surprisal of a
vowel = 4.16 bits (3.86
without u)

Average surprisal of a
consonant = 6.03 bits
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Surprisal

Example 1

Last consonant removed:
Jus the he hea struc agains te roo o te hal: i fac se wa no rathe moe tha
nie fee hig.
average missing information: 4.59 bits

Last vowel removed:
Jst thn hr hed strck aganst th rof f th hll: n fct sh ws nw rathr mor thn
nin fet hgh.
average missing information: 3.85 bits

Original sentence:
Just then her head struck against the roof of the hall: in fact she was now
rather more than nine feet high.
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Surprisal

The surprisal of words in Alice in Wonderland

x f (x) p(x) s(x)

the 1643 0.062 4.02
and 872 0.033 4.94
to 729 0.027 5.19
a 632 0.024 5.40
she 541 0.020 5.62
it 530 0.020 5.65
of 514 0.019 5.70
said 462 0.017 5.85
i 410 0.015 6.02
alice 386 0.014 6.11
...
<any> 3 0.000 13.2
<any> 2 0.000 13.7
<any> 1 0.000 14.7
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Surprisal

Example 2

She stretched herself up on tiptoe, and peeped over the edge of the
mushroom, and her eyes immediately met those of a large blue caterpillar,
that was sitting on the top with its arms folded, quietly smoking a long
hookah, and taking not the smallest notice of her or of anything else.

Average information of of = 5.7 bits

Average information of low frequency compulsory content words =
14.7 bits (freq = 1), 13.7 bits (freq = 2), 13.2 bits (freq = 3)
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Surprisal

Aside: Is written English a good code?

Highly efficient codes make use of regularities in the messages from the
source using shorter codes for more probable messages.

From an encoding point of view, surprisal gives an indication of the
number of bits we would want to assign a message symbol.

It is efficient to give probable items (with low surprisal) a small bit
code because we have to transmit them often.

So, is English efficiently encoded?

Can we predict the information provided by a word from its length?
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Surprisal

Aside: Is written English a good code?

Piantadosi et al. investigated whether the surprisal of a word correlates
with the word length.

They calculated the average surprisal (average information) of a word
w given its context c

That is, − 1
C

C∑
i=1

log2 p(w |ci )

Context is approximated by the n previous words.
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Surprisal

Aside: Is written English a good code?

Piantadosi et al. results for
Google n-gram corpus.

Spearman’s rank on y-axis
(0=no correlation,
1=monotonically related)

Context approximated in
terms of 2, 3 or 4-grams (i.e.
1, 2, or 3 previous words)

Average information is a
better predictor than
frequency most of the time.
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Surprisal

Aside: Is written English a good code?

Piantadosi et al: Relationship between frequency (negative log unigram
probability) and length, and information content and length.
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Conditional entropy

In language, events depend on context

Examples from Alice in Wonderland:

Generated using p(x) for x ∈ {a-z , }:
dgnt a hi tio iui shsnghihp tceboi c ietl ntwe c a ad ne saa

hhpr bre c ige duvtnltueyi tt doe

Generated using p(x |y) for x , y ∈ {a-z , }:
s ilo user wa le anembe t anceasoke ghed mino fftheak ise linld met
thi wallay f belle y belde se ce
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Conditional entropy

In language, events depend on context

Examples from Alice in Wonderland:

Generated using p(x) for x ∈ {words in Alice}:
didnt and and hatter out no read leading the time it two down to just
this must goes getting poor understand all came them think that
fancying them before this

Generated using p(x |y) for x , y ∈ {words in Alice}:
murder to sea i dont be on spreading out of little animals that they
saw mine doesnt like being broken glass there was in which and giving
it after that
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Conditional entropy

In language, events depend on context

Joint entropy is the amount of information needed on average to
specify two discrete random variables:

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(x , y)

Conditional entropy is the amount of extra information needed to
communicate Y, given that X is already known:

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x) = −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(y |x)

Chain rule connects joint and conditional entropy:

H(X ,Y ) = H(X ) + H(Y |X )

H(X1...Xn) = H(X1) + H(X2|X1) + ... + H(Xn|X1...Xn−1)
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Conditional entropy

Example 3

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

“Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun
The frumious Bandersnatch!”

Information in transitions of Bandersnatch:

Surprisal of n given a = 2.45 bits

Surprisal of d given n = 2.47 bits

Remember average surprisal of a character, H(X ), was 4.05 bits.
H(X |Y ) turns out to be about 2.8 bits.
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Entropy rate

What about Example 4?

Thank you, it’s a very interesting dance to watch,’ said Alice, feeling very
glad that it was over at last.

To make predictions about when we insert that we need to think about
entropy rate.
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Entropy rate

Entropy of a language is the entropy rate

Language is a stochastic process generating a sequence of word tokens

The entropy of the language is the entropy rate for the stochastic
process:

Hrate(L) = lim
n→∞

1
nH(X1...Xn)

The entropy rate of language is the limit of the entropy rate of a
sample of the language, as the sample gets longer and longer.
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Entropy rate

Hypothesis: constant rates of information are preferred

The capacity of a communication channel is the number of bits on
average that it can transmit

Capacity defined by the noise in the channel—mutual information of
the channel input and output (more next week)

Assumption: language users want to maximize information
transmission while minimizing comprehender difficulty.

Hypothesis: language users prefer to distribute information uniformly
throughout a message

Entropy Rate Constancy Principle (Genzel & Charniak), Smooth
Signal Redundancy Hypothesis (Aylett & Turk), Uniform Information
Density (Jaeger)
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Entropy rate

Hypothesis: constant rates of information are preferred

Could apply the hypothesis at all levels of language use:

In speech we can modulate the duration and energy of our
vocalisations

For vocabulary we can choose longer and shorter forms

maths vs. mathematics, don’t vs. do not

At sentence level, we may make syntactic reductions:

The rabbit (that was) chased by Alice.
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Entropy rate

Hypothesis: constant rates of information are preferred

Uniform Information Density:

Within the bounds defined by grammar, speakers prefer utterances
that distribute information uniformly across the signal

Where speakers have a choice between several variants to encode
their message, they prefer the variant with more uniform information
density

Evaluated on a large scale corpus study of complement clause structures in
spontaneous speech (Switchboard Corpus of telephone dialogues)
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Entropy rate

Hypothesis: constant rates of information are preferred
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Entropy rate

Hypothesis: constant rates of information are preferred
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Entropy rate

Notice that these information theoretic accounts are rarely explanatory
(doesn’t explicitly tell us what might be happening in the brain)

An exception is Hale (2001) where we used surprisal to reason about
parse trees and full parallelism

Information theoretic accounts are unlikely to be the full story but
they are predictive of certain phenomena
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