
Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 30

Course Admin

What is this course about?

- What can formal models of language teach us, if anything, about
human language?

- Can we use information theoretic concepts to describe aspects of
human language?

This course will:

extend your knowledge of formal languages

extend your knowledge of parsing

introduce some ideas from information theory

tell you something about human language processing and acquisition

Paula Buttery (Computer Lab) Formal Models of Language 2 / 30

Course Admin

Study and Supervisions

Technical handouts: Grammars, Information Theory

Formal Language vs. Natural Language handouts

Lecture Slides

Two supervision worksheets

Paula Buttery (Computer Lab) Formal Models of Language 3 / 30

Course Admin

Study and Supervisions

Supervision content

coding exercises

some short proofs

short written answers

Useful Textbooks

Jurafsky, D. and Martin, J. Speech and Language Processing

Manning, C. and Schutze, H. Foundations of Statistical Natural
Language Processing

Ruslan M. The Oxford Handbook of Computational Linguistics

Clark, A., Fox, C, and Lappin, S. The Handbook of Computational

Linguistics and Natural Language Processing

Kozen, D. Automata and Computability

Paula Buttery (Computer Lab) Formal Models of Language 4 / 30

What is a language?

A natural language is a human communication system

A natural language can be thought of as a mutually understandable
communication system that is used between members of some
population.

When communicating, speakers of a natural language are tacitly
agreeing on what strings are allowed (i.e. which strings are
grammatical).

Dialects and specialised languages (including e.g. the language used
on social media) are all natural languages in their own right.

Note that named languages that you are familiar with, such as
French, Chinese, English etc, are usually historically, politically or
geographically derived labels for populations of speakers rather than
linguistic ones.

Paula Buttery (Computer Lab) Formal Models of Language 5 / 30

What is a language?

A natural language has high ambiguity

I made her duck

1 I cooked waterfowl for her

2 I cooked waterfowl belonging to her

3 I created the (plaster?) duck she owns

4 I caused her to quickly lower her head

5 I turned her into a duck

Several types of ambiguity combine to cause many meanings:

morphological (her can be a dative pronoun or possessive pronoun
and duck can be a noun or a verb)

syntactic (make can behave both transitively and ditransitively; make

can select a direct object or a verb)

semantic (make can mean create, cause, cook ...)

Paula Buttery (Computer Lab) Formal Models of Language 6 / 30

What is a language?

A formal language is a set of strings over an alphabet

Alphabet

An alphabet is specified by a finite set, Σ, whose elements are called
symbols. Some examples are shown below:

- {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the 10-element set of decimal digits.
- {a, b, c , ..., x , y , z} the 26-element set of lower case characters of
written English.

- {aardvark , ..., zebra} the 250,000-element set of words in the Oxford
English Dictionary.1

Note that e.g. the set of natural numbers N = {0, 1, 2, 3, ...} cannot be an
alphabet because it is infinite.

1Note that the term alphabet is overloaded
Paula Buttery (Computer Lab) Formal Models of Language 7 / 30

What is a language?

A formal language is a set of strings over an alphabet

Strings

A string of length n over an alphabet Σ is an ordered n-tuple of
elements of Σ.

Σ∗ denotes the set of all strings over Σ of finite length.

- If Σ = {a, b} then ǫ, ba, bab, aab are examples of strings over Σ.
- If Σ = {a} then Σ∗ = {ǫ, a, aa, aaa, ...}
- If Σ = {cats, dogs, eat} then
Σ∗ = {ǫ, cats, cats eat, cats eat dogs, ...}2

Languages

Given an alphabet Σ any subset of Σ∗ is a formal language over
alphabet Σ.

2The spaces here are for readable delimitation of the symbols of the alphabet.
Paula Buttery (Computer Lab) Formal Models of Language 8 / 30

What is a language?

Reminder: languages can be defined using rule induction

Axioms

Axioms specify elements of Σ that exist in L.

(a1)
a

Induction Rules

Rules show hypotheses above the line and conclusions below the
line (also referred to as children and parents respectively). The
following is a unary rule where u indicates some string in Σ∗:

u
(r1)

ub

Paula Buttery (Computer Lab) Formal Models of Language 9 / 30

What is a language?

Reminder: languages can be defined using rule induction

Derivations

Given a set of axioms and rules for inductively defining a subset, L, of
Σ∗, a derivation of a string u in L is a finite rooted tree with nodes
which are elements of L such that:

- the root of the tree (towards the bottom of the page) is u itself;
- each vertex of the tree is the conclusion of a rule whose hypotheses are
its children;

- each leaf of the tree is an axiom.

Using our axiom and rule, the derivation for the string abb is:

(a1)
a

u
(r1)

ub

(a1)
a

(r1)
ab

(r1)
abb

Paula Buttery (Computer Lab) Formal Models of Language 10 / 30

What is a language?

Reminder: languages can also be defined using automata

Recall that a language is regular if it is equal to the set of strings accepted
by some deterministic finite-state automaton (DFA).
A DFA is defined as M = (Q,Σ,∆, s,F) where:

Q = {q0, q1, q2...} is a finite set of states.

Σ is the alphabet: a finite set of transition symbols.

∆ ⊆ Q×Σ×Q is a function Q×Σ → Q which we write as δ. Given
q ∈ Q and i ∈ Σ then δ(q, i) returns a new state q′ ∈ Q

s is a starting state

F is the set of all end states

Paula Buttery (Computer Lab) Formal Models of Language 11 / 30

What is a language?

Reminder: regular languages are accepted by DFAs

For L(M) = {a, ab, abb, ...}:

M=(Q = {q0, q1, q2},

Σ = {a, b},

∆ = {(q0, a, q1), (q0, b, q2), ..., (q2, b, q2)},

s = q0,

F = {q1}) q0start q1

q2

a

b

b

a

a, b

Paula Buttery (Computer Lab) Formal Models of Language 12 / 30

Regular grammars

Simple relationship between a DFA and production rules

Sstart A B C q4
b a a !

a

Q ={S ,A,B ,C , q4}

Σ = {b, a, !}

q0 = S

F = {q4}

S → bA

A → aB

B → aC

C → aC

C → !

Paula Buttery (Computer Lab) Formal Models of Language 13 / 30

Regular grammars

Regular grammars generate regular languages

Given a DFA M = (Q,Σ,∆, s,F) the language, L(M), of strings accepted
by M can be generated by the regular grammar Greg = (N ,Σ, S ,P)
where:

N= {Q} the non-terminals are the states of M

Σ = Σ the terminals are the set of transition symbols of M

S = s the starting symbol is the starting state of M

P = qi → aqj when δ(qi , a) = qj ∈ ∆
or qi → ǫ when q ∈ F (i.e. when q is an end state)

Paula Buttery (Computer Lab) Formal Models of Language 14 / 30

Regular grammars

Strings are derived from production rules

In order to derive a string from a grammar

start with the designated starting symbol
then non-terminal symbols are repeatedly expanded using the rewrite
rules until there is nothing further left to expand.

The rewrite rules derive the members of a language from their internal
structure (or phrase structure)

S

b A

S

b A

a B

S

b A

a B

a C

S

b A

a B

a C

!

S → bA A → aB B → aC C →!

Paula Buttery (Computer Lab) Formal Models of Language 15 / 30

Regular grammars

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be
expressed in the form:

X → aY

X → a

or alternatively, they can all be expressed as:

X → Ya

X → a

The two grammars are weakly-equivalent since they generate the same
strings.
But not strongly-equivalent because they do not generate the same
structure to strings

Paula Buttery (Computer Lab) Formal Models of Language 16 / 30

Regular grammars

A regular language has a left- and right-linear grammar

S

b A

a B

a C

!

S → bA

A → aB

B → aC

C → aC

C → !

S

A !

B a

C a

b

S → A!

A → Ba

B → Ca

C → Ca

C → b

Paula Buttery (Computer Lab) Formal Models of Language 17 / 30

Phrase structure grammars

A regular grammar is a phrase structure grammar

A phrase structure grammar over an alphabet Σ is defined by a tuple
G = (N ,Σ, S ,P). The language generated by grammar G is L(G):

Non-terminals N : Non-terminal symbols (often uppercase letters) may
be rewritten using the rules of the grammar.

Terminals Σ: Terminal symbols (often lowercase letters) are elements of
Σ and cannot be rewritten. Note N ∩ Σ = ∅.

Start Symbol S : A distinguished non-terminal symbol S ∈ N . This
non-terminal provides the starting point for derivations.3

Phrase Structure Rules P: Phrase structure rules are pairs of the
form (w , v) usually written:
w → v , where w ∈ (Σ ∪N)∗N (Σ ∪N)∗ and v ∈ (Σ ∪N)∗

3S is sometimes referred to as the axiom but note that, whereas in the inductively

defined sets above the axioms denoted the smallest members of the set, here the axioms

denote the existence of particular derivable structures.
Paula Buttery (Computer Lab) Formal Models of Language 18 / 30

Phrase structure grammars

Definition of a phrase structure grammar derivation

Given G = (N ,Σ, S ,P) and w , v ∈ (N ∪ Σ)∗ a derivation step is
possible to transform w into v if:

u1, u2 ∈ (N ∪ Σ)∗ exist such that w = u1αu2, and v = u1βu2

and α → β ∈ P

This is written w =⇒
G

v

A string in the language L(G) is a member of Σ∗ that can be derived in a
finite number of derivation steps from the starting symbol S .

We use =⇒
G∗

to denote the reflexive, transitive closure of derivation steps,

consequently L(G) = {w ∈ Σ∗|S =⇒
G∗

w}.

Paula Buttery (Computer Lab) Formal Models of Language 19 / 30

Phrase structure grammars

PSGs may be grouped by production rule properties

Chomsky suggested that phrase structure grammars may be grouped
together by the properties of their production rules.

Name Form of Rules

regular (A → Aa or A → aA) and A → a | A ∈ N and a ∈ Σ
context-free A → α | A ∈ N and α ∈ (N ∪ Σ)∗

context-sensitive αAβ → αγβ | A ∈ N and α, β, γ ∈ (N ∪ Σ)∗and γ 6= ǫ
recursively enum α → β | α, β ∈ (N ∪ Σ)∗ and α 6= ǫ

A class of languages (e.g. the class of regular languages) is all the
languages that can be generated by a particular type of grammar.

The term power is used to describe the expressivity of each type of
grammar in the hierarchy (measured in terms of the number of subsets of
Σ∗ that the type can generate)

Paula Buttery (Computer Lab) Formal Models of Language 20 / 30

Phrase structure grammars

We can reason about properties of language classes

All Chomsky languages classes are closed under union.

L(G1) ∪ L(G2) = L(G3) where G1,G2,G3 are all grammars of the
same type

e.g. the union of a context-free language with another context-free
language will yield a context-free language.

All Chomsky language classes are closed under intersection with a

regular language.

L(G1) ∩ L(G2) = L(G3) where G1 is a regular grammar and G2,G3

are grammars of the same type

e.g. the intersection of a regular language with a context-free
language will yield another context-free language.

Paula Buttery (Computer Lab) Formal Models of Language 21 / 30

Phrase structure grammars

We can define the complexity of language classes

The complexity of a language class is defined in terms of the recognition

problem.

Type Language Class Complexity

3 regular O(n)
2 context-free O(nc)
1 context-sensitive O(cn)
0 recursively enumerable undecidable

Paula Buttery (Computer Lab) Formal Models of Language 22 / 30

Phrase structure grammar and natural language

Can regular grammars model natural language?

Why do we care about the answer to this question?

We’d like fast algorithms for natural language processing applications.

Potentially tells us something about human processing and acquisition
(more in later lectures).

Paula Buttery (Computer Lab) Formal Models of Language 23 / 30

Phrase structure grammar and natural language

Can regular grammars model natural language?

Centre Embedding

Infinitely recursive structures described by the rule, A → αAβ, which
generate language examples of the form, anbn.

- The students the police arrested complained

S

the students S

the police S arrested

complained

- The luggage that the passengers checked arrived

- The luggage that the passengers that the storm delayed checked

arrived

In general /the a (that the a)n−1bn/ where nouns are mapped to a

and verbs to b
Paula Buttery (Computer Lab) Formal Models of Language 24 / 30

Phrase structure grammar and natural language

Reminder: use the pumping lemma to prove not regular

The pumping lemma for regular languages is used to prove that a
language is not regular. The pumping lemma property is:

All w ∈ L with |w | ≥ l can be expressed as a concatenation of three
strings, w = u1vu2, where u1, v and u2 satisfy:

- |v | ≥ 1 (i.e. v 6= ǫ)

- |u1v | ≤ l

- for all n ≥ 0, u1v
nu2 ∈ L (i.e. u1u2 ∈ L, u1vu2 ∈ L, u1vvu2 ∈ L,

u1vvvu2 ∈ L, etc.)

Paula Buttery (Computer Lab) Formal Models of Language 25 / 30

Phrase structure grammar and natural language

Reminder: use the pumping lemma to prove not regular

For each l ≥ 1, find some w ∈ L of length ≥ l so that no matter how w is
split into three, w = u1vu2, with |u1v | ≤ l and |v | ≥ 1, there is some
n ≥ 0 for which u1v

nu2 is not in L.

To prove that L = {anbn|n ≥ 0} is not regular. For each l ≥ 1, consider
w = albl ∈ L.

If w = u1vu2 with |u1v | ≤ l & |v | ≥ 1, then for some r and s:

- u1 = ar

- v = as , with r + s ≤ l and s ≥ 1

- u2 = al−r−sbl

so u1v
0u2 = ar ǫal−r−sbl = al−sbl

But al−sbl /∈ L so by the Pumping Lemma, L is not a regular
language

Paula Buttery (Computer Lab) Formal Models of Language 26 / 30

Phrase structure grammar and natural language

Complexity of sub-language is not complexity of language

Careful here though:

A regular grammar could generate constructions of the form a∗b∗ but
not the more exclusive subset anbn which would represent centre
embeddings.

More generally the complexity of a sub-language is not necessarily the
complexity of a language.

If we show that the English subset anbn is not regular it does not
follow that English itself is not regular.

Paula Buttery (Computer Lab) Formal Models of Language 27 / 30

Phrase structure grammar and natural language

Can we prove English is not regular?

- If you intersect a regular language with another regular language you
should get a third regular language. Lreg1 ∩ Lreg2 = Lreg3

- Also regular languages are closed under homomorphism (we can map
all nouns to a and all verbs to b)

- So if English is regular and we intersect it with another regular
language (e.g. the one generated by /the a (that the a)∗b∗/) we
should get another regular language.
if Leng then Leng ∩ La ∗ b∗ = Lreg3

- However the intersection of an a∗b∗ with English is anbn (in our
example case specifically /the a (that the a)n−1bn/), which is not
regular as it fails the pumping lemma property.
but Leng ∩ La∗b∗ = Lanbn (which is not regular)

- The assumption that English is regular must be incorrect.

Paula Buttery (Computer Lab) Formal Models of Language 28 / 30

Phrase structure grammar and natural language

Problems using regular grammars for natural language

But for finite n we can still model English using a DFA—we can design the
states to capture finite levels of embedding.

So are there any other reasons not to just use a regular grammar?

Redundancy Grammars written using finite state techniques alone are
highly redundant: Regular grammars very difficult to build
and maintain.

Useful internal structures The left-linear or right-linear internal structures
derived by regular grammars are generally not very useful for
higher level NLP applications. We need informative internal
structure so that we can, for example, build up good
semantic representations.

Paula Buttery (Computer Lab) Formal Models of Language 29 / 30

Phrase structure grammar and natural language

Problems using regular grammars for natural language

S

NP

NP

the cat

S

alice saw

VP

grins

S

X

Y

Z

the cat

alice

saw

grins

Paula Buttery (Computer Lab) Formal Models of Language 30 / 30

Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 31

Regular grammars give us linear trees

Sstart A B

C D q5

the
guard

girl

chases

the
rabbit

girl

G = (N ,Σ, S ,P) where P =
{A → aA,A → a | A ∈ N , a ∈ Σ}

- N = {S ,A,B ,C ,D, q5}

- Σ = {the, girl , guard , ...}

- S = S

- P = {S → the A,
A → guard B | girl B ,
B → chases C ,
C → the D,
D → girl | rabbit}

S

the A

girl B

chases C

the D

rabbit

Paula Buttery (Computer Lab) Formal Models of Language 2 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

G = (N ,Σ, S ,P) where
P = {A → α |
A ∈ N , α ∈ (N ∪ Σ)∗}

A brief excursion into
linguistic terminology...

Paula Buttery (Computer Lab) Formal Models of Language 3 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

When modelling natural
language, linguists label
the non-terminal symbols
with names that encode
the most influential word
in the phrase. They call
this influential word the
head.

- noun phrases, NP ,
have a head noun

Paula Buttery (Computer Lab) Formal Models of Language 4 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

- verb phrases, VP ,
have a head verb

Paula Buttery (Computer Lab) Formal Models of Language 5 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

- prepositional phrases,
PP , have a head
preposition

Paula Buttery (Computer Lab) Formal Models of Language 6 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

- the head of the
whole string, S , is
always the main verb

Paula Buttery (Computer Lab) Formal Models of Language 7 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

Trees below nodes of the
same type are
interchangeable to yield
another string in the
language:

- NP → N

- N → A N

- N → alice|croquet|...

Paula Buttery (Computer Lab) Formal Models of Language 8 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

croquet

VP

VP

V

plays

NP

N

A

pink

N

flamingos

PP

P

with

NP

N

alice

Trees below nodes of the
same type are
interchangeable to yield
another string in the
language:

- NP → N

- N → A N

- N → alice|croquet|...

Paula Buttery (Computer Lab) Formal Models of Language 9 / 31

Context-free grammars

CFGs are often written in Chomsky Normal Form

Chomsky normal form: every production rule has the form, A → BC , or,
A → a where A,B ,C ∈ N , and, a ∈ Σ.

Conversion to Chomsky Normal Form

For every CFG there is a weakly equivalent CNF alternative.
A → BCD may be rewritten as the two rules, A → BX , and, X → CD.

A

B C D

A

B X

C D

CNF is a requirement for some parsing algorithms.

Paula Buttery (Computer Lab) Formal Models of Language 10 / 31

Push down automata

Context-free languages are accepted by push down

automata

A PDA is defined as M = (Q,Σ, Γ,∆, s,⊥,F) where:

Q = {q0, q1, q2...} is a finite set of states.

Σ is the input alphabet.

Γ is the stack alphabet.

∆ ⊆ (Q× (Σ ∪ ǫ)× Γ)× (Q× Γ∗) is a relation
(Q× (Σ ∪ ǫ)× Γ) → (Q× Γ∗) which we write as δ. Given q ∈ Q,
i ∈ Σ and A ∈ Γ then δ(q, i ,A) returns (q′, α), that is, a new state
q′ ∈ Q and replaces A at the top of the stack with α ∈ Γ∗

s is the starting state

⊥ is the initial stack symbol

F is the set of all end states

Paula Buttery (Computer Lab) Formal Models of Language 11 / 31

Push down automata

Moving from one state to the next we may push or pop

in state qx on encountering transition symbol a transition to state qy
popping A from the top of the stack and pushing B onto the stack

qx qy

a : A/B

BEFORE AFTER

A B

z0 z0

in state qx transition to state qy pushing A onto the stack

qx qy

ǫ : ǫ/A

BEFORE AFTER

z0 A

z0

in state qx transition to state qy popping A from the stack

qx qy

ǫ : A/ǫ

BEFORE AFTER

A z0
z0

Paula Buttery (Computer Lab) Formal Models of Language 12 / 31

Push down automata

A toy context-free grammar

S → NP VP
NP → Pron
NP → Det N
VP → V
VP → V NP
Det → {a, the}
N → {maw, noggin, ...}

Pron → {he, she, him, her}
V → {eats, sings}

S

NP

Det

the

N

maw

VP

V

eats

NP

Pron

him

Paula Buttery (Computer Lab) Formal Models of Language 13 / 31

Push down automata

Recognising a string with a push down automaton

S → NP VP
NP → Pron
NP → Det N
VP → V
VP → V NP

Det → {a,the}
N → {maw, noggin, ...}

Pron → {he, him, her}
V → {eats, sings}

q0

start

q1 q2

q3

q4

q5 q6

q7

q8 q9 q10

q11

ǫ : ǫ/VP ǫ : ǫ/NP ǫ : NP/N

ǫ : NP/Pron

ǫ : ǫ/Det a, the : Det/ǫ

maw, noggin : N/ǫ

he, she : Pron/ǫ

ǫ : z0/z0

ǫ : VP/NP

ǫ : VP/V

ǫ : ǫ/V

eats, sings : V/ǫ

ǫ : NP/NP

ǫ : z0/z0

Paula Buttery (Computer Lab) Formal Models of Language 14 / 31

Push down automata

Is ‘the maw eats him’ a string in the language?

the q0 z0
the q0-q1 VP z0
the q1-q2 NP VP z0
the q2-q3 N VP z0
the q3-q5 Det N VP z0
maw q5-q6 N VP z0
eats q6-q7 VP z0
eats q7-q8 NP z0
eats q8-q9 V NP z0
him q9-q10 NP z0
him q10-q2 NP z0
him q2-q4 Pron z0
him q4-q7 z0
ǫ q7-q11 z0

S → NP VP
NP → Pron
NP → Det N
VP → V
VP → V NP
Det → {a,the}
N → {maw, noggin, ...}

Pron → {he, him, her}
V → {eats, sings}

q0

start

q1 q2

q3

q4

q5 q6

q7

q8 q9 q10

q11

ǫ : ǫ/VP ǫ : ǫ/NP ǫ : NP/N

ǫ : NP/Pron

ǫ : ǫ/Det a, the : Det/ǫ

maw, noggin : N/ǫ

he, him : Pron/ǫ

ǫ : z0/z0

ǫ : VP/NP

ǫ : VP/V

ǫ : ǫ/V

eats, sings : V/ǫ

ǫ : NP/NP

ǫ : z0/z0

”the maw eats him”

Paula Buttery (Computer Lab) Formal Models of Language 15 / 31

Push down automata

Can context-free grammars model natural language?

Cross Serial Dependencies

A small number of languages exhibit strings of the form

noun1 noun2 ... nounn verb1 verb2 ... verbn

Zurich dialect of Swiss German

mer d’chind em Hans es huus haend wele laa hälfe aastriiche.

we the children Hans the house have wanted to let help paint.
we have wanted to let the children help Hans paint the house

Such expressions, i.e. of the form /anbmcndm/, may not be derivable by a
context-free grammar.
mer d’chindn em Hansm es huus haend wele laan hälfem aastriiche.

→ /wanbmxcndmy/

Paula Buttery (Computer Lab) Formal Models of Language 16 / 31

Push down automata

Use the pumping lemma to prove not context-free

The pumping lemma for context-free languages (CFLs) is used to show
that a language is not context-free. The pumping lemma property for
CFLs is:

All w ∈ L with |w | ≥ k can be expressed as a concatenation of five
strings, w = u1yu2zu3, where u1, y , u2, z and u2 satisfy:

|yz | ≥ 1 (i.e. we cannot have y = ǫ and z = ǫ)
|yu2z | ≤ k

for all n ≥ 0, u1y
nu2z

nu3 ∈ L
(i.e. u1u2u3 ∈ L, u1yu2zu3 ∈ L, u1yyu2zzu3 ∈ L etc.)

To prove that Swiss German is not context-free, similar proof as for centre
embeddings (last lecture). Except that you need to remember that:
Lreg1 ∩ Lcfg1 = Lcfg2

Paula Buttery (Computer Lab) Formal Models of Language 17 / 31

Mildly context-sensitive languages

Are CSGs required to model natural languages?

Remember the complexity of a language class was defined in terms of the
recognition problem.

Type Language Class Complexity machine

3 regular O(n) DFA
2 context-free O(nc) PDA
1 context-sensitive O(cn) LBA
0 recursively enumerable undecidable Turing

- Modelling natural languages using context-sensitive grammars is very
expensive. In practice we don’t have to because only very limited
constructions are not captured by context-free grammars.

- However, it is still fun to place a limit on the complexity of natural
languages — we are not limited to discussing language classes only in
terms of the Chomsky hierarchy.

Paula Buttery (Computer Lab) Formal Models of Language 18 / 31

Mildly context-sensitive languages

We are not limited to the Chomsky hierarchy

Recursively Enumerable
 Languages

Context Sensitive
Languages

Context Free
Languages

Regular
Languages

Paula Buttery (Computer Lab) Formal Models of Language 19 / 31

Mildly context-sensitive languages

We are not limited to the Chomsky hierarchy

Recursively Enumerable
 Languages

Context Sensitive
Languages

Context Free
Languages

Regular
Languages

Natural
Languages

Paula Buttery (Computer Lab) Formal Models of Language 20 / 31

Mildly context-sensitive languages

The mildly context-sensitive grammars

Joshi defined a class of languages that is more expressive than context-free
languages, less expressive than context-sensitive languages and also sits
neatly in the Chomsky hierarchy.

mildly context-sensitive languages

An abstract language class has the following properties:

it includes all the context-free languages;

members of the languages in the class may be recognised in
polynomial time;

the languages in the class account for all the constructions in natural
language that context-free languages fail to account for (such as
cross-serial dependencies).

Paula Buttery (Computer Lab) Formal Models of Language 21 / 31

Mildly context-sensitive languages

Mildly CSGs are a subset of CSGs that account for

natural language

Recursively Enumerable
 Languages

Context Sensitive
Languages

Mildly Context Sensitive
Languages

Context Free
Languages

Regular
Languages

Paula Buttery (Computer Lab) Formal Models of Language 22 / 31

Mildly context-sensitive languages

In Tree Adjoining Grammars trees are rewritten as trees.

In phrase structure grammar symbols were rewritten with other
symbols

In Tree Adjoining Grammars trees are rewritten as other trees.

The grammar consists of sets of two types of elementary tree:

initial trees or α trees

auxiliary trees or β trees

A derivation is the result of recursive composition of elementary trees via
one of two operations:

substitution

adjunction.

Paula Buttery (Computer Lab) Formal Models of Language 23 / 31

Mildly context-sensitive languages

Tree adjoining grammars: the substitution operation

substitution: a substitution may occur when a non-terminal leaf
(that is, some A ∈ N) of the current derivation tree is replaced by an
α-tree that has A at its root.

X

A
,

A

⇒

X

A

current derivation α-tree resulting tree

Paula Buttery (Computer Lab) Formal Models of Language 24 / 31

Mildly context-sensitive languages

Tree adjoining grammars: the adjunction operation

adjunction:an adjunction may occur when an internal non-terminal
node of the current derivation (some B ∈ N) tree is replaced by a β
tree that has a B at its root and foot.

X

B

,

B

B∗
⇒

X

B

B∗

current derivation β-tree resulting tree

Paula Buttery (Computer Lab) Formal Models of Language 25 / 31

Mildly context-sensitive languages

Tree adjoining grammars: definition

- N is the set of non-terminals

- Σ is the set of terminals

- S is a distinguished non-terminal S ∈ N that will be the root of
complete derivations

- I is a set of initial trees (also known as α trees). Internal nodes of
an α tree are drawn from N and the leaf nodes from Σ ∪N ∪ ǫ.

- A is a set of auxiliary trees (also know as β trees). Internal nodes of
an β-tree are drawn from N and the leaf nodes from Σ ∪N ∪ ǫ. One
leaf of a β-tree is distinguished as the foot and will be the same
non-terminal as at its root (the foot is often indicated with an
asterisk).

Paula Buttery (Computer Lab) Formal Models of Language 26 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Gtag = (N ,Σ, S , I,A) where:

I = {

NP

N

alice ,

NP

N

croquet
,

NP

N

flamingos
,

S

NP VP

V

plays

NP

}

A = {

N

A

pink

N*

,

VP

VP* PP

P

with

NP

}

Paula Buttery (Computer Lab) Formal Models of Language 27 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

NP

N

alice

S

NP VP

V

plays

NP

NP

N

croquet
⇒

S

NP

N

alice

VP

V

plays

NP

N

croquet

Paula Buttery (Computer Lab) Formal Models of Language 28 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

VP

VP* PP

P

with

NP

S

NP

N

alice

VP

V

plays

NP

N

croquet
⇒

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

Paula Buttery (Computer Lab) Formal Models of Language 29 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

NP

N

flamingos

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

⇒

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 30 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

N

A

pink

N*

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

flamingos
⇒

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 31 / 31

Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 30

Deterministic context-free languages

Shift-reduce parsers are useful for deterministic languages

LR(k) Shift-reduce parsers are most useful for recognising the strings of
deterministic languages (languages where no string has more than one
analysis) which have been described by an unambiguous grammar.

Quick reminder:

The parsing algorithm has two actions: shift and reduce

Initially the input string is held in the buffer and the stack is empty.

Symbols are shifted from the buffer to the stack

When the top items of the stack match the RHS of a rule in the
grammar then they are reduced, that is, they are replaced with the
LHS of that rule.

k refers to the look-ahead.

Paula Buttery (Computer Lab) Formal Models of Language 2 / 30

Deterministic context-free languages

Reminder: shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action

abcd shift

a bcd reduce

A bcd shift

Ab cd shift

Abc d shift

Abcd reduce

AbcD reduce

AbC reduce

AB reduce

S

Paula Buttery (Computer Lab) Formal Models of Language 3 / 30

Deterministic context-free languages

Reminder: properties of Deterministic CFLs

Deterministic context-free languages:

are a proper subset of the context-free languages

are accepted by deterministic push-down automata

can be modelled by an unambiguous grammar

can be parsed in linear time

parser can be automatically generated from the grammar

Paula Buttery (Computer Lab) Formal Models of Language 4 / 30

Non-deterministic context-free languages

CFGs used to model natural language are not deterministic

Natural languages (with all their inherent ambiguity) are not well
suited to shift-reduce parsers which operate deterministically
recognising a single derivation without backtracking

However, natural language parsing can be achieved deterministically
by selecting parsing actions using a machine learning classifier (more
on this next time).

All CFGs (including those exhibiting ambiguity) can be recognised in
polynomial time using chart parsing algorithms.

Paula Buttery (Computer Lab) Formal Models of Language 5 / 30

Non-deterministic context-free languages

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number

Num of trees for sentence length n =
n−1∏

k=2

(n − 1) + k

k

sentence length number of trees

3 2
4 5
5 14
6 42
7 132

sentence length number of trees

8 429
9 1430
10 4862
11 16796
12 58786

We need parsing algorithms that can efficiently store the parse forest and
not derive shared parts of tree more than once—chart parsers

Paula Buttery (Computer Lab) Formal Models of Language 6 / 30

Chart parsing

The Earley parser is a chart parsing algorithm

The Earley parser is a dynamic programming algorithm that records
partial derivations in a chart (a table).

Uses a top-down approach to explore the whole search space,
recovering multiple derivations where they exist.

The progress of the algorithm is encoded in something called a
dotted rule or progress rule:

A → ●αβ | α●β | αβ● where A → αβ ∈ P.

Rules of the form A → ●αβ have all symbols still to be explored;

Rules of the form A → αβ● have been completely used up deriving a
portion of the string.

Paula Buttery (Computer Lab) Formal Models of Language 7 / 30

Chart parsing

Partial derivations are recorded in a chart

By convention, each row of the chart is referred to as an edge.

An edge in the chart records a dotted rule, and its span.

The span refers to the portion of the input string which is consistent
with the partial tree.

If we wish to discover the structure of a parse, an edge must also
record the derivation history of the immediately previous partial
tree(s) that made the current partial tree possible.

Paula Buttery (Computer Lab) Formal Models of Language 8 / 30

Chart parsing

Partial derivations are recorded in a chart

For an illustration, consider the partial tree below which has been derived
when attempting to parse the sentence they can fish:

0

S

NP

N

they

VP

1 can 2 fish 3

id rule [start, end] hist

...
ei S → NP●VP [0, 1] hk

Paula Buttery (Computer Lab) Formal Models of Language 9 / 30

Chart parsing

Partial derivations are recorded in a chart

For input string u = a1...an and grammar Gcfg = (N ,Σ, S ,P):

An edge A → α●β [i , j] is added if

S =⇒
G∗

a1...aiAγ where γ are symbols in u yet to be parsed

and α =⇒
G∗

ai+1...aj

The chart is initialised with the edge S → ●αβ [0, 0];

The input string u = a1...an is recognised when we add the edge
S → αβ● [0, n].

Paula Buttery (Computer Lab) Formal Models of Language 10 / 30

Chart parsing

Today’s toy grammar

We will parse the sentence they can fish using Gcfg = (N ,Σ, S ,P) where:

N = {S ,NP,VP,PP,N,V ,P}
Σ = {can, fish, in, rivers, they ...}
S = S

P = {S → NP VP

NP → N PP | N
PP → P NP

VP → VP PP | V VP | V NP | V
N → can | fish | rivers | ...
P → in | ...
V → can | fish | ... }

0 they 1 can 2 fish 3

Paula Buttery (Computer Lab) Formal Models of Language 11 / 30

Chart parsing

Initialise the chart

The chart is initialised with S → ●αβ [0, 0].

id rule [start, end] hist

e0 S → ● NP VP [0, 0]

In rule induction notation:

(induction step)
S → ●αβ [0, 0]

Paula Buttery (Computer Lab) Formal Models of Language 12 / 30

Chart parsing

Three steps of the Earley parser: predict step

This step adds new edges to the chart and can be thought of as expanding
tree nodes in the top-down derivation.

id rule [start, end] hist

e0 S → ● NP VP [0, 0]

e1 NP → ● N [0, 0]
e2 NP → ● N PP [0, 0]

In rule induction notation:

A → α●Bβ [i , j]
(predict step) where B → γ ∈ P

B → ●γ [j , j]

Paula Buttery (Computer Lab) Formal Models of Language 13 / 30

Chart parsing

Three steps of the Earley parser: scan step

This step allows us to check if we have a node that is consistent with the
input sentence. If the input sentence is u = a1...an we can add a new edge
if A → ●a [i , j − 1] and a = aj .

id rule [start, end] hist

e0 S → ● NP VP [0, 0]

e1 NP → ● N [0, 0]
e2 NP → ● N PP [0, 0]
e3 N → they ● [0, 1]

In rule induction notation:

A → ●a [i , j − 1]
(scan step) when a = aj

A → a● [i , j]

Paula Buttery (Computer Lab) Formal Models of Language 14 / 30

Chart parsing

Three steps of the Earley parser: scan step

For natural language sentence parsing tasks, Σ can be the finite set of
words in the language (a very large set).

when carrying out the predict step from a rule like NP → ● N we
would end up adding a new edge for every noun in the language.

To save us from creating all these edges we can privilege a set of the
non-terminals and perform a forward look-up of the next aj to see
whether it will be consistent.

In our example this set would be NPofS = {N,V ,P}, that is, all the
non-terminal symbols that represent the parts-of-speech of the
language (such as nouns, verbs, adjectives...).

During the scanning step, we find edges containing non-terminals in
NPofS with a dot on their LHS and check if the upcoming word is
consistent with the part-of-speech. Iff it is consistent then we add an
edge to the chart.

Paula Buttery (Computer Lab) Formal Models of Language 15 / 30

Chart parsing

Three steps of the Earley parser: complete step

This step propagates fully explored tree nodes in the chart.

id rule [start, end] hist

e0 S → ● NP VP [0, 0]

e1 NP → ● N [0, 0]
e2 NP → ● N PP [0, 0]
e3 N → they ● [0, 1]
e4 NP → N ● [0, 1] e3
e5 NP → N ● PP [0, 1] e3
e6 S → NP ● VP [0, 1] e4

In rule induction notation:

A → α●Bβ [i , k] B → γ● [k , j]
(complete step)

A → αB●β [i , j]

Paula Buttery (Computer Lab) Formal Models of Language 16 / 30

Chart parsing

id rule [start, end] hist word n

e0 S → ● NP VP [0, 0] word 0

e1 NP → ● N [0, 0] word 1
e2 NP → ● N PP [0, 0]
e3 N → they ● [0, 1]
e4 NP → N ● [0, 1] (e3)
e5 NP → N ● PP [0, 1] (e3)
e6 S → NP ● VP [0, 1] (e4)

e7 PP → ● P NP [1, 1] word 2
e8 VP → ● V [1, 1]
e9 VP → ● V NP [1, 1]
e10 VP → ● V VP [1, 1]
e11 VP → ● VP PP [1, 1]
e12 V → can ● [1, 2]
e13 VP → V ● [1, 2] (e12)
e14 VP → V ● NP [1, 2] (e12)
e15 VP → V ● VP [1, 2] (e12)
e16 S → NP VP ● [0, 2] (e4,e13)
e17 VP → VP ● PP [1, 2] (e13)

e18 NP → ● N [2, 2] word 3
e19 NP → ● N PP [2, 2]
e20 VP → ● V [2, 2]
e21 VP → ● V NP [2, 2]
e22 VP → ● V VP [2, 2]Paula Buttery (Computer Lab) Formal Models of Language 17 / 30

Chart parsing

The run time of the Earley parser is polynominal

- The complete step dominates run time O(n2)

- Running time of the Earley parser is O(n3)

- Run time is reduced in various scenarios, e.g. when the grammar is
unambiguous or left-recursive .1

So what makes a sentence complex for a human to process?

1See https://homepages.cwi.nl/~jve/lm2005/earley.pdf for a full discussion
Paula Buttery (Computer Lab) Formal Models of Language 18 / 30

https://homepages.cwi.nl/~jve/lm2005/earley.pdf

Human parsing complexity

The term complexity can be used to describe human

processing difficulty

The term complexity is also used to describe the perceived human
processing difficulty of a sentence: work in this area is generally referred to
as computational psycholinguistics.

Complexity within this domain can refer to:

the time and space requirements of the algorithm that your brain is
posited to require while processing a sentence.

the information theoretic content of the sentence itself in isolation
from the human processor (more in later lectures on this on)

Paula Buttery (Computer Lab) Formal Models of Language 19 / 30

Human parsing complexity

The term complexity can be used to describe human

processing difficulty

Traditional work in this area has looked mainly at parsing algorithms to
discover whether they exhibit properties that correlate with measurable
predictors of complexity in human linguistic behaviour.

Two general assumptions are made in this work:

1) Sentences will take longer to process if they are more complicated
for the human parser.

Processing time is usually measured as the time it takes to read a
sentence.
This is can be done with eye-tracking machines which also identify
whether the subject reread any parts of a sentence.
Researchers also use neuro-imaging techniques (MEG, fMRI)

Paula Buttery (Computer Lab) Formal Models of Language 20 / 30

Human parsing complexity

The term complexity can be used to describe human

processing difficulty

2) Sentences will not occur frequently in the spoken language if
they are complicated to produce or comprehend.

Frequencies are calculated by counting constructions of interest in
spoken language corpora.

The assumption then is that one (or both) of the two measurements of
perceived complexity above will correlate with time and space
requirements of the parsing algorithm.

Paula Buttery (Computer Lab) Formal Models of Language 21 / 30

Human parsing complexity

What makes a sentence expensive to process?

Example: long distance syntactic dependencies (e.g. garden-paths)

The horse raced past the barn

The horse raced past the barn fell—comparatively slow reading time

S

NP

the horse

VP

V

raced

PP

P

past

NP

DET

the

N

barn

S

NP

NP

the horse

VP

V

raced

PP

P

past

NP

DET

the

N

barn

VP

V

fell

Paula Buttery (Computer Lab) Formal Models of Language 22 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing

Using predictability as a measure of difficulty

The cognitive effort associated with a word in a sentence can be
measured by the word’s surprisal (negative log conditional
probability): log 1

P(wi |w1...i−1)
(more on this in later lectures)

The suggestion is that probabilistic context-free grammars (PCFGs)
can be used to model human language processing.

Gpcfg = (Σ,N , S ,P, q) where q is a mapping from rules in P to a
probability and

∑
A→α ∈ P

q(A → α) = 1

A probabilistic Earley parser is used as a model of online eager
sentence processing.

Paula Buttery (Computer Lab) Formal Models of Language 23 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing

The probabilistic Earley parser computes all parses of its input.

As a psycholinguistic theory it is one of total parallelism (as opposed
to a reanalysis theory)

Calculate prefix probabilities i.e. probabilities of partially derived
trees.

Hypothesis is that the cognitive effort expended to parse a given
prefix is proportional to the total probability of all the structural
analyses which are not compatible with the prefix.

Generates predictions about word-by-word reading times by comparing
the total effort expended before some word to the total effort after.

The explanation for garden-pathing is then the reduction in the
probability of the new tree set compared with the previous tree set.

The model accounts successfully for reading times.

Paula Buttery (Computer Lab) Formal Models of Language 24 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing

Toy grammar with probabilities

S → NP VP 1
NP → N PP 0.2
NP → N 0.8
PP → P NP 1
VP → VP PP 0.1
VP → V VP 0.2
VP → V NP 0.4
VP → V 0.3
N → {it, fish, rivers, December, they} 0.2
P → {in} 1
V → {can, fish} 0.5

Paula Buttery (Computer Lab) Formal Models of Language 25 / 30

Human parsing complexity

Hale — Earley parser as a model of sentence processing

edgen dotted rule [S, W] hist Prob MaxProb
e0 S →

●
NP VP [0,0] P(S → NP VP)=1

e1 NP →
●

N [0,0] P(e0)P(NP → N)=1*0.8=0.8
e2 NP →

●
N PP [0,0] P(e0)P(NP → N PP)=1*0.2=0.2

e3 N → they
●

[0,1] P(N → they)=0.2
e4 NP → N

●
[0,1] (e3) P(e3)P(NP → N)

=0.2*0.8
=0.16

e5 NP → N
●

PP [0,1] (e3)
e6 S → NP

●
VP [0,1] (e4)

e7 PP →
●

P NP [1,1] P(N → they)P(e2)P(PP → P NP)
=0.2*1*0.2*1=0.04

e8 VP →
●

V [1,1] P(N → they)P(e1)P(VP → V)
=0.2*1*0.8*0.3=0.048

e9 VP →
●

V NP [1,1] P(N → they)P(e1)P(VP → V NP)
=0.2*1*0.8*0.4=0.064

e10 VP →
●

V VP [1,1] P(N → they)P(e1)P(VP → V VP)
=0.2*1*0.8*0.2=0.032

e11 VP →
●

VP PP [1,1] P(N → they)P(e1)P(VP → VP PP)
=0.2*1*0.8*0.1=0.0016

e12 V → can
●

[1,2] P(V → can)=0.5
e13 VP → V

●
[1,2] (e12) P(e12)P(VP → V)

=0.5*0.3
=0.15

e14 VP → V
●

NP [1,2] (e12)
e15 VP → V

●
VP [1,2] (e12)

e16 S → NP VP
●

[0,2] (e4,e13) P(e4)P(e13)P(S → NP VP)
=0.2*0.8*0.5*0.3*1
=0.024

e17 VP → VP
●

PP [1,2] (e13)

Paula Buttery (Computer Lab) Formal Models of Language 26 / 30

Human parsing complexity

Yngve—PDA as a model of sentence processing

q0

start

q1 q2

q3

q4

q5 q6

q7

q8 q9 q10

q11

ǫ : ǫ/VP ǫ : ǫ/NP ǫ : NP/N

ǫ : NP/Pron

ǫ : ǫ/Det a, the : Det/ǫ

maw, noggin : N/ǫ

he, she : Pron/ǫ

ǫ : z0/z0

ǫ : VP/NP

ǫ : VP/V

ǫ : ǫ/V

eats, sings : V/ǫ

ǫ : NP/NP

ǫ : z0/z0

Hypothesis: the size of the stack correlates with working memory
load.

Prediction: sentences which require many items to be placed on the
stack will be difficult to process and also less frequent in the language.

Prediction: when multiple parses are possible we should prefer the
one with the minimised stack.

Paula Buttery (Computer Lab) Formal Models of Language 27 / 30

Human parsing complexity

Yngve—PDA as a model of sentence processing

Yngve formulated the problem as interaction between:

- a register (which holds the current node) and
- the stack (which contains all the nodes left to explore)

Sentences are constructed top-down and left-to-right.

Under these circumstances the size of the stack is hypothesised to
correlate with working memory load.

Paula Buttery (Computer Lab) Formal Models of Language 28 / 30

Human parsing complexity

Hypothesis: stack correlates with working memory load

S→NP VP
NP→Det N
VP→V NP
Det→the
N→girl
N→rabbit
V→chased

S

NP

Det

the

N

girl

VP

V

chased

NP

Det

the

N

rabbit

Register Stack
S
NP VP
Det N VP
the N VP
N VP
girl VP
VP
V NP
chased NP
NP
Det N
the N
N
rabbit

Paula Buttery (Computer Lab) Formal Models of Language 29 / 30

Human parsing complexity

Hypothesis: stack correlates with working memory load

Yngve’s model makes predictions about centre embedding:

Consider:

This is the malt that the rat that the cat that the dog worried killed

ate.

STACK: N VP VP VP

as opposed to:

This is the malt that was eaten by the rat that was killed by the cat

that was worried by the dog.

Yngve evaluated his predictions by looking at frequencies of
constructions in corpus data.

Paula Buttery (Computer Lab) Formal Models of Language 30 / 30

Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 26

Recap:

We said LR shift-reduce parser wasn’t a good fit for natural language
because it proceeds deterministically and natural language is too
ambiguous.

We used the Earley parser to explore the whole tree-space, recording
partial derivations in a chart.

However,

We can use a modified version of the shift-reduce parser in order to
parse natural language.

First we’re going to learn about dependency grammars.

Paula Buttery (Computer Lab) Formal Models of Language 2 / 26

Dependency grammars

A dependency tree is a directed graph

A dependency tree is a directed graph representation of a string—each
edge represents a grammatical relationship between the symbols.

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

⇒

plays

alice croquet with

flamingos

pink

Paula Buttery (Computer Lab) Formal Models of Language 3 / 26

Dependency grammars

A dependency grammar derives dependency trees

Formally Gdep = (Σ,D, s,⊥,P) where:

Σ is the finite set of alphabet symbols

D is the set of symbols to indicate whether the dependent symbol
(the one on the RHS of the rule) will be located on the left or right of
the current item within the string D = {L,R}

s is the root symbol for the dependency tree (we will use s ∈ Σ but
sometimes a special extra symbol is used)

⊥ is a symbol to indicate a halt in the generation process

P is a set of rules for generating dependencies:
P = {(α → β, d) | α ∈ (Σ ∪ s), β ∈ (Σ ∪ ⊥), d ∈ D}

In dependency grammars we refer to the term on the LHS of a rule as the
head and the RHS as the dependent (as opposed to parents and children

in phrase structure grammars).

Paula Buttery (Computer Lab) Formal Models of Language 4 / 26

Dependency grammars

Dependency trees have several representations

Two diagrammatic representations of a dependency tree for the string
bacdfe generated using Gdep = (Σ,D, s,⊥,P) where:

Σ = {a...f }
D = {L,R}
s = a
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)
(b →⊥,L | ⊥,R)
(c →⊥,L | ⊥,R)
(f →⊥,L | ⊥,R)}

a

b c d

e

f

b a c d f e

The same rules would have been used to generate the string badfec .
Useful when there is flexibility in the symbol order of grammatical strings.

Paula Buttery (Computer Lab) Formal Models of Language 5 / 26

Dependency grammars

Valid trees may be projective or non-projective

Valid derivation is one that is rooted in s and is weakly connected.

Derivation trees may be projective or non-projective.

Non-projective trees can be needed for long distance dependencies.

a toast to the queen was raised tonight

a toast was raised to the queen tonight

The difference has implications for parsing complexity.

Paula Buttery (Computer Lab) Formal Models of Language 6 / 26

Dependency grammars

Labels can be added to the dependency edges

A label can be added to each generated dependency:

P = {(α → β : r , d) | α ∈ (Σ ∪ s), β ∈ (Σ ∪ ⊥), d ∈ D, r ∈ B}

where B is the set of dependency labels.

When used for natural language parsing, dependency grammars will often
label each dependency with the grammatical function (or the
grammatical relation) between the words.

alice plays croquet with pink flamingos

nsubj dobj

iobj dobj

nmod

root

Paula Buttery (Computer Lab) Formal Models of Language 7 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

Projective dependency grammars can be shown to be weakly equivalent

to context-free grammars.

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 8 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice}

N{alice}

alice

VP{plays}

VP{plays}

V{plays}

plays

NP{croquet}

N{croquet}

croquet

PP{with}

P{with}

with

NP{flamingos}

N{flamingos}

A{pink}

pink

N{flamingos}

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 9 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice}

N{alice}

alice

VP{plays}

VP{plays}

V{plays}

plays

NP{croquet}

N{croquet}

croquet

PP{with}

P{with}

with

NP{flamingos}

N{flamingos}

A{pink}

pink

N{flamingos}

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 10 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice} VP{plays}

VP{plays}

NP{croquet}

PP{with}

NP{flamingos}

N{flamingos}

A{pink}

Paula Buttery (Computer Lab) Formal Models of Language 11 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice} VP{plays}

VP{plays}

NP{croquet}

PP{with}

NP{flamingos}

N{flamingos}

A{pink}

Paula Buttery (Computer Lab) Formal Models of Language 12 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice} .

.

NP{croquet}

PP{with}

NP{flamingos}

.

A{pink}

Paula Buttery (Computer Lab) Formal Models of Language 13 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

plays

alice .

.

croquet

with

flamingos

.

pink

Paula Buttery (Computer Lab) Formal Models of Language 14 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

plays

alice croquet with

flamingos

pink

plays

alice .

.

croquet

with

flamingos

.

pink

Projective dependency grammars can be shown to be weakly equivalent

to context-free grammars.

Paula Buttery (Computer Lab) Formal Models of Language 15 / 26

Dependency parsing

Dependency parsers use a modified shift-reduce parser

A common method for dependency parsing of natural language
involves a modification of the LR shift-reduce parser

The shift operator continues to move items of the input string from
the buffer to the stack

The reduce operator is replaced with the operations left-arc and
right-arc which reduce the top two stack symbols leaving the head

on the stack

Consider L(Gdep) ⊆ Σ∗, during parsing the stack may hold γab where
γ ∈ Σ∗ and a, b ∈ Σ, and b is at the top of the stack:

left-arc reduces the stack to γb and records use of rule b → a

right-arc reduces the stack to γa and records the use of rule a → b

Paula Buttery (Computer Lab) Formal Models of Language 16 / 26

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record

bacdfe shift

b acdfe shift

ba cdfe left-arc a → b

a cdfe shift

ac dfe right-arc a → c

a dfe shift

ad fe shift

adf e shift

adfe left-arc e → f

ade right-arc d → e

ad right-arc a → d

a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) Formal Models of Language 17 / 26

Dependency parsing

Data driven dependency parsing is grammarless

For natural language there would be considerable effort in manually
defining P—this would involve determining the dependencies between
all possible words in the language.

Creating a deterministic grammar would be impossible (natural
language is inherently ambiguous).

Natural language dependency parsing can achieved deterministically
by selecting parsing actions using a machine learning classifier.

The features for the classifier include the items on the stack and in
the buffer as well as properties of those items (including
word-embeddings for the items).

Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).

It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

Paula Buttery (Computer Lab) Formal Models of Language 18 / 26

Dependency parsing

We can use a beam search to record the parse forest

The classifier can return a probability of an action.

To avoid the problem of early incorrect resolution of an ambiguous
parse, multiple competing parses can be recorded and a beam search

used to keep track of the best alternative parses.

Google’s Parsey McParseface is an English language dependency
parser that uses word-embeddings as features and a neural network to
score parse actions. A beam search is used to compare competing
parses.

Paula Buttery (Computer Lab) Formal Models of Language 19 / 26

Dependency parsing

Dependency parsers can be useful for parsing speech

The most obvious difference between spoken and written language is the
mode of transmission:

Prosody refers to the patterns of stress and intonation in a language.

Stress refers to the relative emphasis or prominence given to a
certain part of a word (e.g. CON-tent (the stuff included in
something) vs. con-TENT (happy))

Intonation refers to the way speakers’ pitch rises and falls in line
with words and phrases, to signal a question, for example.

Co-speech gestures involve parts of the body which move in
coordination with what a speaker is saying, to emphasise,
disambiguate or otherwise.

We can use some of these extra features to help the parse-action-classifier
when parsing spoken language.

Paula Buttery (Computer Lab) Formal Models of Language 20 / 26

Dependency parsing

Prosody has been used to resolve parsing ambiguity

Briscoe suggested using a shift-reduce parser that favours shift over
reduce wherever both are possible.

In the absence of extra-linguistic information the parser delays
resolution of the grammatical dependency.

Extra features enable an override of the shift preference at the point
where the ambiguity arises, including:

- prosodic information (intonational phrase boundary)

The model accounts for frequencies of certain syntactic constructions
as attested in corpora.

Paula Buttery (Computer Lab) Formal Models of Language 21 / 26

Dependency parsing

Spoken language lacks string delimitation

A fundamental issue that affects syntactic parsing of spoken language
is the lack of the sentence unit (i.e string delimitation)—indicated
in writing by a full-stop and capital letter.

Speech units may be identified by pauses, intonation (e.g. rising for
a question, falling for a full-stop), change of speaker.

Speech units are not much like written sentences due to speaker

overlap, co-constructions, ellipsis, hesitation, repetitions and
false starts.

Speech units often contain words and grammatical constructions that
would not appear in the written form of the language.

Paula Buttery (Computer Lab) Formal Models of Language 22 / 26

Dependency parsing

Spoken language lacks string delimitation

Excerpt from the Spoken section of the British National Corpus

set your sights realistically haven’t you and there’s a lot of people

unemployed and what are you going to do when you eventually leave

college if you get there you’re not gonna step straight into television mm

right then let’s see now what we’re doing where’s that recipe book for that

chocolate and banana cake chocolate and banana cake which book was it

oh right oh some of these chocolate cakes are absolutely mm mm mm

right what’s the topping what’s that icing sugar cocoa powder and vanilla

essence oh luckily I’ve got all those I think yes

Paula Buttery (Computer Lab) Formal Models of Language 23 / 26

Dependency parsing

Spoken language lacks string delimitation

Excerpt from the Spoken section of the British National Corpus

Set your sights realistically haven’t you? And there’s a lot of people

unemployed. And what are you going to do when you eventually leave

college? If you get there. You’re not gonna step straight into television.

Mm right then, let’s see now what we’re doing... Where’s that recipe book

for that chocolate and banana cake? Chocolate and banana cake which

book was it? Oh right. Oh, some of these chocolate cakes are absolutely

mm mm mm. Right, what’s the topping? what’s that? Icing sugar, cocoa

powder and vanilla essence. Oh luckily I’ve got all those I think, yes!

Paula Buttery (Computer Lab) Formal Models of Language 24 / 26

Dependency parsing

Dependency parsers can be useful for parsing speech

Spoken language can look noisy and somewhat grammarless but the
disfluencies are predictable

Honnibal & Johnson’s Redshift parser introduces an edit action, to
remove disfluent items from spoken language:

edit: on detection of disfluency, remove connected words and their
dependencies.

Parser uses extra classifier features to detect disfluency.

Paula Buttery (Computer Lab) Formal Models of Language 25 / 26

Dependency parsing

Example of dependency parser using an edit action

stack buffer action record

his1 ... bankrupt7 shift

his1 company2 ... bankrupt7 shift

his1 company2 went3 ... bankrupt7 left-arc company2 → his1
company2 went3 ... bankrupt7 shift

company2 went3 broke4 ... bankrupt7 left-arc
✭

✭
✭
✭

✭
✭
✭✭❤

❤
❤

❤
❤

❤
❤❤

went3 → company2
went3 broke4 ... bankrupt7 shift

went3 broke4 I −mean5 ... bankrupt7 right-arc
✭

✭
✭
✭
✭

✭✭❤
❤

❤
❤
❤

❤❤
went3 → broke4

went3 I −mean5 ... bankrupt7 shift

went3 I −mean5 went6 bankrupt7 edit

company2 went6 bankrupt7 shift

company2 went6 bankrupt7 left-arc went6 → company2
went6 bankrupt7 shift

went3 bankrupt7 right-arc went6 → bankrupt7
went3 terminate root → went6

his1 company2 ✘
✘✘❳
❳❳went3 ✘

✘
✘❳

❳
❳broke4 ✭

✭
✭

✭✭❤
❤
❤

❤❤I −mean5 went6 brankrupt7

Paula Buttery (Computer Lab) Formal Models of Language 26 / 26

Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 27

Grammar induction

Last time we looked at ways to parse without ever building a grammar

But what if we want to know what a grammar is for a set of strings?

Today we will look at grammar induction.

...we’ll start with an example

Paula Buttery (Computer Lab) Formal Models of Language 2 / 27

Grammar induction

CFGs may be inferred using recursive byte-pair encoding

The following is a speech unit of whale song:

b a a c c d c d e c d c d e c d c d e a a b a a c c d e c d c d e

We are going to infer some rules for this string using the following
algorithm:

count the frequency of all adjacent pairs in the string

reduce the most frequent pair to a non-terminal

repeat until there are no pairs left with a frequency > 1

This is used for compression—once we have removed all the repeated
strings we have less to transmit or store (we have to keep the grammar to
decompress)

Paula Buttery (Computer Lab) Formal Models of Language 3 / 27

Grammar induction

CFGs may be inferred using recursive byte-pair encoding

b a a c c d c d e c d c d e c d c d e a a b a a c c d e c d c d e

F → c d

b a a c F F e F F e F F e a a b a a c F e F F e

G → F e

b a a c F G F G F G a a b a a c G F G

H → F G

b a a c H H H a a b a a c G H

I → a a

b I c H H H I b I c G H

J → b I

J c H H H I J c G H

K → J c

K H H H I K G H

L → H H

K L H I K G H

S → K L H I K G H

Paula Buttery (Computer Lab) Formal Models of Language 4 / 27

Grammar induction

CFGs may be inferred using recursive byte-pair encoding

S

K

J

b I

a a

c

L

H

F

c d

G

F

c d

e

H

F

c d

G

F

c d

e

H

F

c d

G

F

c d

e

I

a a

K

J

b I

a a

c

G

F

c d

e

H

F

c d

G

F

c d

e

Paula Buttery (Computer Lab) Formal Models of Language 5 / 27

Grammar induction

Byte-pair has shortcomings for grammar induction

Byte-pair encoding has benefits for encryption but shortcomings when it
comes to grammar induction (especially of natural language):

the algorithm is frequency driven and this might not lead to
appropriate constituency

in the circumstance that two pairs have the same frequency we make
an arbitrary choice of which to reduce.

the data is assumed to be non-noisy (all string sequences encountered
are treated as valid)

(for natural language) the algorithm learns from strings alone (a more
appropriate grammar might be derived by including extra-linguistic
information)

We might suggest improvements to the algorithm (such as allowing
ternary branching) but in order to compare the algorithms we need a
learning paradigm in which to study them.

Paula Buttery (Computer Lab) Formal Models of Language 6 / 27

Grammar induction

Paradigms are defined over grammatical systems

Grammatical system:

- H a hypothesis space of language descriptions (e.g. all possible
grammars)

- Ω a sample space (e.g. all possible strings)

- L a function that maps from a member of H to a subset of Ω

If we have (Hcfg ,Σ
∗,L) then for some G ∈ Hcfg we have:

L(G) = {sa, sb, sc ...} ⊆ Σ∗

Learning function:

The learning function, F , maps from a subset of Ω to a member of H

For G ∈ Hcfg then F ({sd , se , sf ...}) = G for some {sd , se , sf ...} ⊆ Σ∗

Note that the learning function is an algorithm (referred to as the learner)
and that learnability is a property of a language class (when F surjective).

Paula Buttery (Computer Lab) Formal Models of Language 7 / 27

Grammar induction

Learning paradigms specify the nature of input

Varieties of input given to the learner:

positive evidence: the learner receives only valid examples from the
sample space (i.e. if the underlying grammar is G then the learner
receives samples, si , such that si ∈ L(G)).

negative evidence: the learner receives samples flagged as not being
in the language.

exhaustive evidence: the learner receives every relevant sample from
the sample space.

non-string evidence: the learner receives samples that are not
strings.

Paula Buttery (Computer Lab) Formal Models of Language 8 / 27

Grammar induction

Learning paradigms also specify...

assumed knowledge: the things known to the learner before learning
commences (for instance, the hypothesis space, H might be assumed
knowledge).

nature of the algorithm: are samples considered sequentially or as a
batch? does the learner generate a hypothesis after every sample
received in a sequence? does the learner generate a hypothesis after
specific samples only?

required computation: e.g. is the learner constrained to act in
polynomial time.

learning success: what are the criteria by which we measure success
of the learner?

Paula Buttery (Computer Lab) Formal Models of Language 9 / 27

Gold’s paradigm

Gold’s learning paradigms have been influential

Gold’s best known paradigm modelled language learning as an infinite
process in which a learner is presented with an infinite stream of strings of
the target language:

for a grammatical system (G,Σ∗,L)

select one of the languages L in the class defined by L (this is called
the target language, L = L(G) where G ∈ G)

samples are presented to the learner one at a time s1, s2, ... in an
infinite sequence

the learner receives only positive evidence (i.e. only si such that
si ∈ L)

after each sample the learner produces a hypothesis (i.e. learner
produces Gn after having seen the data s1, ...sn

the evidence is exhaustive, every s ∈ L will be presented in the
sequence.

Paula Buttery (Computer Lab) Formal Models of Language 10 / 27

Gold’s paradigm

Gold’s learning paradigms have been influential

Gold defined identification in the limit as successful learning:

There is some number N such that for all i > N, Gi = GN and
L(GN) = L

N is finite but there are no constraints placed on computation time of
the learning function.

In this paradigm a class of languages is learnable if:

Every language in the class can be identified in the limit no matter

what order the samples appear in

Paula Buttery (Computer Lab) Formal Models of Language 11 / 27

Gold’s paradigm

Gold’s learning paradigms have been influential

Well known results from Gold’s paradigm include:

The class of suprafinite languages are not learnable (a suprafinite
class of languages is one that contains all finite languages and at least
one infinite language)

This means that e.g. the class of context-free languages are not

learnable within Gold’s paradigm.

We might care about this if we think that Gold’s paradigm is a good
model for natural language acquisition...(if we don’t think this then it is
just a fun result!).

Paula Buttery (Computer Lab) Formal Models of Language 12 / 27

Gold’s paradigm

Gold: suprafinite languages are not learnable

Short proof:

Let L∞ be an infinite language L∞ = {s1, s2, ...}

Now construct an infinite sequence of finite languages L1 = {s1},
L2 = {s1, s2}, ...

Consider a particular presentation order s1...s1, s2...s2, s3...

When learning L1 we repeat s1 until the learner predicts L1

When learning L2 repeat s1 until the learner predicts L1 then repeat
s2 until it predicts L2

Continue like this for all Li : either the learner fails to converge on one
of these, or it ultimately fails to converge on L∞ for finite N.

We have found an ordering of the samples that makes the learner fail

Many people have investigated what IS learnable in this paradigm. We will
look at one example, but to do so we introduce one more grammar.

Paula Buttery (Computer Lab) Formal Models of Language 13 / 27

Categorial grammars

Categorial grammars are lexicalized grammars

In a classic categorial grammar all symbols in the alphabet are
associated with a finite number of types.

Types are formed from primitive types using two operators, \ and /.

If Pr is the set of primitive types then the set of all types, Tp,
satisfies:

- Pr ⊂ Tp

- if A ∈ Tp and B ∈ Tp then A\B ∈ Tp

- if A ∈ Tp and B ∈ Tp then A/B ∈ Tp

Note that it is possible to arrange types in a hierarchy: a type A is a
subtype of B if A occurs in B (that is, A is a subtype of B iff A = B ;
or (B = B1\B2 or B = B1/B2) and A is a subtype of B1 or B2).

Paula Buttery (Computer Lab) Formal Models of Language 14 / 27

Categorial grammars

Categorial grammars are lexicalized grammars

A relation, R, maps symbols in the alphabet Σ to members of Tp.

A grammar that associates at most one type to each symbol in Σ is
called a rigid grammar

A grammar that assigns at most k types to any symbol is a k-valued

grammar.

We can define a classic categorial grammar as Gcg = (Σ,Pr , S ,R)
where:

- Σ is the alphabet/set of terminals
- Pr is the set of primitive types
- S is a distinguished member of the primitive types S ∈ Pr that will be
the root of complete derivations

- R is a relation Σ× Tp where Tp is the set of all types as generated
from Pr as described above

Paula Buttery (Computer Lab) Formal Models of Language 15 / 27

Categorial grammars

Categorial grammars are lexicalized grammars

A string has a valid parse if the types assigned to its symbols can be
combined to produce a derivation tree with root S .

Types may be combined using the two rules of function application:

Forward application is indicated by the symbol >:

A/B B
>

A
Backward application is indicated by the symbol <:

B A\B
<

A

Paula Buttery (Computer Lab) Formal Models of Language 16 / 27

Categorial grammars

Categorial grammars are lexicalized grammars

Derivation tree for the string xyz using the grammar Gcg = (Σ,Pr , S ,R)
where:

Pr = {S ,A,B}
Σ = {x , y , z}
S = S

R = {(x ,A), (y , S\A/B), (z ,B)}

x
R

A

y
R

S\A/B
z

R
B

>
S\A

<
S

S (<)

A

x

S\A (>)

S\A/B

y

B

z

Paula Buttery (Computer Lab) Formal Models of Language 17 / 27

Categorial grammars

Categorial grammars are lexicalized grammars

Derivation tree for the string Alice chases rabbits using the grammar
Gcg = (Σ,Pr , S ,R) where:

Pr = {S ,NP}
Σ = {alice, chases, rabbits}
S = S

R = {(alice,NP), (chases, S\NP/NP),
(rabbits,NP)}

alice
R

NP

chases
R

S\NP/NP
rabbits

R
NP

>
S\NP

<
S

S (<)

NP

alice

S\NP (>)

S\NP/NP

chases

NP

rabbits

Paula Buttery (Computer Lab) Formal Models of Language 18 / 27

Categorial grammars

We can construct a strongly equivalent CFG

To create a context-free grammar Gcfg = (N ,Σ, S ,P) with strong
equivalence to Gcg = (Σ,Pr , S ,R) we can define Gcfg as:

N = Pr ∪ range(R)
Σ = Σ
S = S

P = {A → B A\B | A\B ∈ range(R)}
∪ {A → A/B B | A/B ∈ range(R)}
∪ {A → a | R : a → A}

Paula Buttery (Computer Lab) Formal Models of Language 19 / 27

categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Buszkowski developed an algorithm for learning rigid grammars from
functor-argument structures.

The algorithm proceeds by inferring types from the available
information

Eg. for Forward Application:

(>)

. . →

B

B/A A

Variables are unified across all encountered structures.

Kanazawa constructed a proof to show that the algorithm could learn
the class of rigid grammars from an infinite stream of
functor-argument structures — as required to satisfy Gold’s paradigm.

Paula Buttery (Computer Lab) Formal Models of Language 20 / 27

categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Let Gi be the current hypothesis of the learner:

Gi : alice → x1

grows → s\x1

Let the next functor-argument structor encountered in the steam be:

(<)

alice (<)

grows quickly

Paula Buttery (Computer Lab) Formal Models of Language 21 / 27

categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Infer types to the new functor-argument structure:

(<)

alice (<)

grows quickly
→

s (<)

x2

alice

s\x2 (<)

x3

grows

〈s\x2〉\x3

quickly

Paula Buttery (Computer Lab) Formal Models of Language 22 / 27

categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Look up words at the leaf nodes of the new structure in Gi

If the word exists in Gi , add types inferred at leaf nodes to the
existing set of types for that word; else create new word entry.

s (<)

x2

alice

s\x2 (<)

x3

grows

〈s\x2〉\x3

quickly

Gi : alice → x1

grows → s\x1

Gi+1 : alice → x1, x2

grows → s\x1, x3

quickly → 〈s\x2〉\x3

Paula Buttery (Computer Lab) Formal Models of Language 23 / 27

categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Gi+1 : alice → x1, x2

grows → s\x1, x3

quickly → 〈s\x2〉\x3

Unify the set of types. If unification fails then fail.

x2 7→ x1

x3 7→ s\x1

Output the lexicon.

Gi+1 : alice → x1

grows → s\x1

quickly → 〈s\x2〉\〈s\x1〉

Paula Buttery (Computer Lab) Formal Models of Language 24 / 27

categorial grammar learner

FYI: a categorial grammar learner within Gold’s paradigm

Using this learner within Gold’s paradigm over various sample spaces it is
possible to prove:

Rigid grammars are learnable from functor-argument structor and
strings

k-valued grammars (for a specific k) are learnable from
functor-argument structor and strings

Note that the above mentioned grammars are subsets of the CFGs

Paula Buttery (Computer Lab) Formal Models of Language 25 / 27

Problems with Gold’s paradigm

Gold’s paradigm is not much like human acquisition

Gold’s paradigm requires convergence in a finite number of steps
(hypotheses of G) the amount of data it sees is unbounded.

Gold’s learner can use unbounded amounts of computation.

- A child only sees a limited amount of data, and has limited
computational resources

Success in this paradigm tells you absolutely nothing about the
learner’s state at any finite time.

- Children learn progressively

The learner has to learn for every possible presentation of the samples
(including presentations that have been chosen by an adversary with
knowledge of the internal state of the learner).

- It is arguable that the distributions are in some way helpful:
parentese

Paula Buttery (Computer Lab) Formal Models of Language 26 / 27

Problems with Gold’s paradigm

Gold’s paradigm is not much like human acquisition

Gold’s learner is required to exactly identify the target language.

- We do not observe this in humans

We observe agreement on grammaticality between adults and children
approaching adult competence but we also observe differences in word
choices and grammaticality judgments between adults speakers.

Gold’s learner requires a hypothesis to be selected after every step.

- In fact there is evidence that children only attend to selective
evidence (Goldilocks effect)

Paula Buttery (Computer Lab) Formal Models of Language 27 / 27

Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 25

Languages transmit information

In previous lectures we have thought about language in terms of
computation.

Today we are going to discuss language in terms of the information it
conveys...

Paula Buttery (Computer Lab) Formal Models of Language 2 / 25

Entropy

Entropy is a measure of information

Information sources produce information as events or messages.

Represented by a random variable X over a discrete set of symbols
(or alphabet) X .

e.g. for a dice roll X = {1, 2, 3, 4, 5, 6} for a source that produces
characters of written English X = {a...z , }

Entropy (or self-information) may be thought of as:

the average amount of information produced by a source
the average amount of uncertainty of a random variable
the average amount of information we gain when receiving a message
from a source
the average amount of information we lack before receiving the message
the average amount of uncertainty we have in a message we are about
to receive

Paula Buttery (Computer Lab) Formal Models of Language 3 / 25

Entropy

Entropy is a measure of information

Entropy, H, is measured in bits.

If X has M equally likely events: H(X) = log2M

Entropy gives us a lower limit on:

the number of bits we need to represent an event space.
the average number of bits you need per message code.

avg length =
(3 ∗ 2) + (2 ∗ 3)

5
= 2.4

> H(5) = log2 5 = 2.32

0

00

000

M1

001

M2

01

M3

1

10

M4

11

M5

Paula Buttery (Computer Lab) Formal Models of Language 4 / 25

Surprisal

Surprisal is also measured in bits

Let p(x) be the probability mass function of a random variable, X
over a discrete set of symbols X .

The surprisal of x is s(x) = log2

(

1
p(x)

)

= − log2 p(x)

Surprisal is also measured in bits

Surprisal gives us a measure of information that is inversely
proportional to the probability of an event/message occurring

i.e probable events convey a small amount of information and
improbable events a large amount of information

The average information (entropy) produced by X is the weighted sum
of the surprisal (the average surprise): H(X) = −

∑

x∈X

p(x) log2 p(x)

Note, that when all M items in X are equally likely (i.e. p(x) = 1
M
)

then H(X) = − log2 p(x) = log2M

Paula Buttery (Computer Lab) Formal Models of Language 5 / 25

Surprisal

The surprisal of the alphabet in Alice in Wonderland

x f (x) p(x) s(x)

26378 0.197 2.33
e 13568 0.101 3.30
t 10686 0.080 3.65
a 8787 0.066 3.93
o 8142 0.056 4.04
i 7508 0.055 4.16
...
v 845 0.006 7.31
q 209 0.002 9.32
x 148 0.001 9.83
j 146 0.001 9.84
z 78 0.001 10.75

If uniformly distributed:
H(X) = log2 27 = 4.75

As distributed in Alice:
H(X) = 4.05

Re. example 1:

Average surprisal of a
vowel = 4.16 bits (3.86
without u)

Average surprisal of a
consonant = 6.03 bits

Paula Buttery (Computer Lab) Formal Models of Language 6 / 25

Surprisal

Example 1

Last consonant removed:
Jus the he hea struc agains te roo o te hal: i fac se wa no rathe moe tha
nie fee hig.
average missing information: 4.59 bits

Last vowel removed:
Jst thn hr hed strck aganst th rof f th hll: n fct sh ws nw rathr mor thn
nin fet hgh.
average missing information: 3.85 bits

Original sentence:
Just then her head struck against the roof of the hall: in fact she was now
rather more than nine feet high.

Paula Buttery (Computer Lab) Formal Models of Language 7 / 25

Surprisal

The surprisal of words in Alice in Wonderland

x f (x) p(x) s(x)

the 1643 0.062 4.02
and 872 0.033 4.94
to 729 0.027 5.19
a 632 0.024 5.40
she 541 0.020 5.62
it 530 0.020 5.65
of 514 0.019 5.70
said 462 0.017 5.85
i 410 0.015 6.02
alice 386 0.014 6.11
...
<any> 3 0.000 13.2
<any> 2 0.000 13.7
<any> 1 0.000 14.7

Paula Buttery (Computer Lab) Formal Models of Language 8 / 25

Surprisal

Example 2

She stretched herself up on tiptoe, and peeped over the edge of the
mushroom, and her eyes immediately met those of a large blue caterpillar,
that was sitting on the top with its arms folded, quietly smoking a long
hookah, and taking not the smallest notice of her or of anything else.

Average information of of = 5.7 bits

Average information of low frequency compulsory content words =
14.7 bits (freq = 1), 13.7 bits (freq = 2), 13.2 bits (freq = 3)

Paula Buttery (Computer Lab) Formal Models of Language 9 / 25

Surprisal

Aside: Is written English a good code?

Highly efficient codes make use of regularities in the messages from the
source using shorter codes for more probable messages.

From an encoding point of view, surprisal gives an indication of the
number of bits we would want to assign a message symbol.

It is efficient to give probable items (with low surprisal) a small bit
code because we have to transmit them often.

So, is English efficiently encoded?

Can we predict the information provided by a word from its length?

Paula Buttery (Computer Lab) Formal Models of Language 10 / 25

Surprisal

Aside: Is written English a good code?

Piantadosi et al. investigated whether the surprisal of a word correlates
with the word length.

They calculated the average surprisal (average information) of a word
w given its context c

That is, − 1
C

C
∑

i=1

log2 p(w |ci)

Context is approximated by the n previous words.

Paula Buttery (Computer Lab) Formal Models of Language 11 / 25

Surprisal

Aside: Is written English a good code?

Piantadosi et al. results for
Google n-gram corpus.

Spearman’s rank on y-axis
(0=no correlation,
1=monotonically related)

Context approximated in
terms of 2, 3 or 4-grams (i.e.
1, 2, or 3 previous words)

Average information is a
better predictor than
frequency most of the time.

Paula Buttery (Computer Lab) Formal Models of Language 12 / 25

Surprisal

Aside: Is written English a good code?

Piantadosi et al: Relationship between frequency (negative log unigram
probability) and length, and information content and length.

Paula Buttery (Computer Lab) Formal Models of Language 13 / 25

Conditional entropy

In language, events depend on context

Examples from Alice in Wonderland:

Generated using p(x) for x ∈ {a-z , }:

dgnt a hi tio iui shsnghihp tceboi c ietl ntwe c a ad ne saa
hhpr bre c ige duvtnltueyi tt doe

Generated using p(x |y) for x , y ∈ {a-z , }:

s ilo user wa le anembe t anceasoke ghed mino fftheak ise linld met
thi wallay f belle y belde se ce

Paula Buttery (Computer Lab) Formal Models of Language 14 / 25

Conditional entropy

In language, events depend on context

Examples from Alice in Wonderland:

Generated using p(x) for x ∈ {words in Alice}:

didnt and and hatter out no read leading the time it two down to just
this must goes getting poor understand all came them think that
fancying them before this

Generated using p(x |y) for x , y ∈ {words in Alice}:

murder to sea i dont be on spreading out of little animals that they
saw mine doesnt like being broken glass there was in which and giving
it after that

Paula Buttery (Computer Lab) Formal Models of Language 15 / 25

Conditional entropy

In language, events depend on context

Joint entropy is the amount of information needed on average to
specify two discrete random variables:

H(X ,Y) = −
∑

x∈X

∑

y∈Y

p(x , y) log2 p(x , y)

Conditional entropy is the amount of extra information needed to
communicate Y, given that X is already known:

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x) = −
∑

x∈X

∑

y∈Y

p(x , y) log2 p(y |x)

Chain rule connects joint and conditional entropy:

H(X ,Y) = H(X) + H(Y |X)

H(X1...Xn) = H(X1) + H(X2|X1) + ...+ H(Xn|X1...Xn−1)

Paula Buttery (Computer Lab) Formal Models of Language 16 / 25

Conditional entropy

Example 3

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

“Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun
The frumious Bandersnatch!”

Information in transitions of Bandersnatch:

Surprisal of n given a = 2.45 bits

Surprisal of d given n = 2.47 bits

Remember average surprisal of a character, H(X), was 4.05 bits.
H(X |Y) turns out to be about 2.8 bits.

Paula Buttery (Computer Lab) Formal Models of Language 17 / 25

Entropy rate

What about Example 4?

Thank you, it’s a very interesting dance to watch,’ said Alice, feeling very
glad that it was over at last.

To make predictions about when we insert that we need to think about
entropy rate.

Paula Buttery (Computer Lab) Formal Models of Language 18 / 25

Entropy rate

Entropy of a language is the entropy rate

Language is a stochastic process generating a sequence of word tokens

The entropy of the language is the entropy rate for the stochastic
process:

Hrate(L) = lim
n→∞

1
n
H(X1...Xn)

The entropy rate of language is the limit of the entropy rate of a
sample of the language, as the sample gets longer and longer.

Paula Buttery (Computer Lab) Formal Models of Language 19 / 25

Entropy rate

Hypothesis: constant rates of information are preferred

The capacity of a communication channel is the number of bits on
average that it can transmit

Capacity defined by the noise in the channel—mutual information of
the channel input and output (more next week)

Assumption: language users want to maximize information
transmission while minimizing comprehender difficulty.

Hypothesis: language users prefer to distribute information uniformly
throughout a message

Entropy Rate Constancy Principle (Genzel & Charniak), Smooth
Signal Redundancy Hypothesis (Aylett & Turk), Uniform Information
Density (Jaeger)

Paula Buttery (Computer Lab) Formal Models of Language 20 / 25

Entropy rate

Hypothesis: constant rates of information are preferred

Could apply the hypothesis at all levels of language use:

In speech we can modulate the duration and energy of our
vocalisations

For vocabulary we can choose longer and shorter forms

maths vs. mathematics, don’t vs. do not

At sentence level, we may make syntactic reductions:

The rabbit (that was) chased by Alice.

Paula Buttery (Computer Lab) Formal Models of Language 21 / 25

Entropy rate

Hypothesis: constant rates of information are preferred

Uniform Information Density:

Within the bounds defined by grammar, speakers prefer utterances
that distribute information uniformly across the signal

Where speakers have a choice between several variants to encode
their message, they prefer the variant with more uniform information
density

Evaluated on a large scale corpus study of complement clause structures in
spontaneous speech (Switchboard Corpus of telephone dialogues)

Paula Buttery (Computer Lab) Formal Models of Language 22 / 25

Entropy rate

Hypothesis: constant rates of information are preferred

Paula Buttery (Computer Lab) Formal Models of Language 23 / 25

Entropy rate

Hypothesis: constant rates of information are preferred

Paula Buttery (Computer Lab) Formal Models of Language 24 / 25

Entropy rate

Notice that these information theoretic accounts are rarely explanatory
(doesn’t explicitly tell us what might be happening in the brain)

An exception is Hale (2001) where we used surprisal to reason about
parse trees and full parallelism

Information theoretic accounts are unlikely to be the full story but
they are predictive of certain phenomena

Paula Buttery (Computer Lab) Formal Models of Language 25 / 25

Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 22

For communication, information has to be transmitted

Goal: To optimise, in terms of throughput and accuracy, the
communication of messages in the presence of a noisy channel

There is a trade off between:

compression: making the most efficient code by removing all the
redundancy

accuracy: adding redundant information so that the input can still be
recovered despite the presence of noise

Today we will:

formalise the noisy channel more carefully

look at some implications for natural language evolution

see how the noisy channel model has inspired a framework for solving
problems in Natural Language Processing.

Paula Buttery (Computer Lab) Formal Models of Language 2 / 22

Transmission can be modelled using a noisy channel

encoder
channel

p(y |x) decoderW

message from

finite alphabet

X

input to

channel

Y

output from

channel

W ′

reconstructed

message

message should be efficiently encoded but with enough redundancy
for the decoder to detect and correct errors

the output depends probabilistically on the input

the decoder finds the mostly likely original message given the output
received

Paula Buttery (Computer Lab) Formal Models of Language 3 / 22

Mutual information: the information Y contains about X

Mutual Information I (X ;Y) is a measure of the reduction in
uncertainty of one random variable due to knowing about another

Can also think of I (X ;Y) being the amount of information one
random variable contains about another

H(X |Y) H(Y |X)

H(X) H(Y)

I (X ;Y)

H(X) average information of input

H(Y) average information in output

H(X |Y) the uncertainty in (extra
information needed for) X given Y is
known

I (X ;Y) the mutual information; the
information in Y that tells us about X

I (X ;Y) = H(X)− H(X |Y)
= H(Y)− H(Y |X)

Paula Buttery (Computer Lab) Formal Models of Language 4 / 22

Channel capacity is determined by mutual information

The capacity of a channel is the maximum of the mutual information
of X and Y over all input distributions of the input p(X)

C = max
p(X)

I (X ;Y)

C is the rate we can transmit information through a channel with an
arbitrarily low probability of not being able to recover the input from
the output

As long as transmission rate is less than C we don’t need to worry
about errors (optimal rate is C)

If transmission rate exceeds C then we need to slow down (e.g. by
inserting a that—last lecture)

In practical applications we reach the channel capacity by designing
an encoding for the input that maximises mutual information.

What might this mean for the evolution of natural languages?

Paula Buttery (Computer Lab) Formal Models of Language 5 / 22

Piantadosi et al.—ambiguity has a communicative benefit

If we are trying to maximise mutual information why has natural
language evolved to be so ambiguous?

Efficient communication systems will necessarily be globally
ambiguous when context is informative about meaning.

Notice that ambiguity is not an issue in normal language use and
overloaded linguistic units are only ambiguous out of context:

Alice wanted to cry
Alice went to the garden
Alice saw two rabbits
Dinah saw some rabbits too.

It is optimal to overload simple units for efficient transmission (we
can assign the short efficient codes more than once and re-use them)

Paula Buttery (Computer Lab) Formal Models of Language 6 / 22

Piantadosi et al.—ambiguity has a communicative benefit

Some evidence to support the argument found in corpora: shorter words
have more meanings

Implication: there must be
enough information in the
context to allow for the
ambiguity in the simple units
as well as any other noise in
the channel.

Paula Buttery (Computer Lab) Formal Models of Language 7 / 22

Gibson et al.—a noisy channel can account for word order

Word order can provide context that is informative about meaning—this
might account for observed word order in the world’s languages

Most languages (out of 1,056 studied) exhibit one of two word orders:

subject-verb-object (SVO) — 41% of languages

the girl chases the rabbit (e.g. English)

subject-object-verb (SOV) — 47% of languages

the girl the rabbit chases (e.g. Japanese)

For interest, 8% exhibit verb-subject-object (VSO) e.g. Welsh and
Irish and 96% of languages have the subject before the object

Paula Buttery (Computer Lab) Formal Models of Language 8 / 22

Gibson et al.—noisy channel account of word order

Experimental observations:

English speakers (SVO) were shown animations of simple events and
asked to describe them using only gestures

- For events in which a human acts on an inanimate object most
participants use SOV despite being SVO speakers (e.g. girl boy kicks)

- For events in which a human acts on another human most participants
use SVO (e.g. girl kicks boy)

- Preference in each case is around 70%

Previous experiments show human preference for linguistic
recapitulation of old information before introducing new information

This might explain SOV gestures for SVO speakers—the verb is new
information the people/objects are not.

So why still use SVO for the animate-animate events? And why is
English SVO?

Paula Buttery (Computer Lab) Formal Models of Language 9 / 22

Gibson et al.—noisy channel account of word order

Argument is that SVO ordering has a better chance of preserving
information over a noisy channel.

Consider the scenario of a girl kicking a boy

Now let one of the nouns get lost in transmission.

If the word order is SOV (the girl the boy kicks), the listener receives
either:
the girl kicks or the boy kicks

If the word order is SVO (the girl kicks the boy) the listener receives
either:
the girl kicks or kicks the boy

In the SVO case more information has made it through the noisy
channel (preserved in the position relative to the verb)

Paula Buttery (Computer Lab) Formal Models of Language 10 / 22

Gibson et al.—noisy channel account of word order

Further evidence for the argument is presented from the finding that there
is a correlation between word order and case markings.

Case marking means that words change depending on their syntactic
function: e.g. she (subject), her (object)

Case marking is rare in SVO languages (like English) and more
common in SOV languages

Suggestion is that when there are other information cues as to which
noun is subject and which is object speakers can default to any
natural preference for word order.

In Natural Language Processing, however, our starting point is after the
evolutionary natural language encoding.

Paula Buttery (Computer Lab) Formal Models of Language 11 / 22

Noisy channel inspired an NLP problem-solving framework

encoder
channel

p(o|i) decoderI O I ′

Many problems in NLP can be framed as trying to find the most likely
input given an output:

I ′ = argmax
i

p(i |o)

p(i |o) is often difficult to estimate directly and reliably, so use Bayes’
theorem:

p(i |o) = p(o|i)p(i)
p(o)

Noting that p(o) will have no effect on argmax function:

I ′ = argmax
i

p(i |o) = argmax
i

p(i)p(o|i)

p(i) is the probability of the input (a language model)

p(o|i) is the channel probability (the probability of getting an
output from the channel given the input)

Paula Buttery (Computer Lab) Formal Models of Language 12 / 22

SMT is an intuitive (non-SOTA) example of noisy channel

We want to translate a text from English to French:

encoder
channel

p(e|f) decoderFrench English French′

In statistical machine translation (SMT) noisy channel model assumes
that original text is in French

We pretend the original text has been through a noisy channel and
come out as English (the word hello in the text is actually bonjour

corrupted by the channel)

To recover the French we need to decode the English:

f ′ = argmax
f

p(f |e) = argmax
f

p(f)p(e|f)

Paula Buttery (Computer Lab) Formal Models of Language 13 / 22

SMT is an intuitive (now historic) example of noisy channel

Recover the French by decoding the English: f ′ = argmax
f

p(f)p(e|f)

encoder
channel

p(e|f) decoderFrench English French′

p(f) is the language model.

- ensures fluency of the translation (usually a very large n-gram model)

p(e|f) is the translation model.

- ensures fidelity of the translation (derived from very large parallel
corpora)

Paula Buttery (Computer Lab) Formal Models of Language 14 / 22

Noisy channel framework influenced many applications

Speech Recognition: recover word sequence by decoding the speech signal

encoder
channel

p(s|w) decoderwords speech words ′

words ′ = argmax
words

p(words)p(speech signal |words)

p(words) is the language model (n-gram model)

p(speech signal |words) is the acoustic model.

Paula Buttery (Computer Lab) Formal Models of Language 15 / 22

Noisy channel framework influenced many applications

Part-of-Speech Tagging:

encoder
channel

p(w |t) decodertags words tags ′

tags ′ = argmax
tags

p(tags)p(words|tags)

Optical Character Recognition:

encoder
channel

p(e|w) decoderwords errors words ′

words ′ = argmax
words

p(words)p(errors|words)

Paula Buttery (Computer Lab) Formal Models of Language 16 / 22

Spelling can be corrected using the noisy channel method

There are two types of spelling error:

non-word errors: Alcie instead of Alice
real-word errors: three instead of there, there instead of their

For illustration we will show how to use a noisy channel model to
correct non-word errors

Non-word correction is a significant problem:

26%: of web queries Wang et al.

13%: errors when asked to retype rather than backspace Whitelaw et

al.

Detection of non-word errors is easy (they fail to appear in a
dictionary)

The best candidate for correction will be the item that maximises
the noisy channel equation.

Paula Buttery (Computer Lab) Formal Models of Language 17 / 22

Spelling can be corrected using the noisy channel method

Spelling correction:

encoder
channel

p(e|w) decoderword error word ′

word ′ = argmax
word

p(word)p(error |word)

p(word) can be obtained from a corpus

p(error |word) can be modelled using minimum text edit distance or
minimum pronunciation distance (the probability of the edit)

Paula Buttery (Computer Lab) Formal Models of Language 18 / 22

Spelling can be corrected using the noisy channel method

Damerau-Levenshtein is edit distance model that counts: insertions.
deletions, substitutions, transpositions

error candidate corrected error type
correction letters letters

acress actress t deletion
acress cress - a insertion
acress caress ca ac transposition
acress access c r substitution
acress across o e substitution
acress acres - s insertion
acress acres - s insertion

80% of errors are within edit distance 1

Almost all errors within edit distance 2

Paula Buttery (Computer Lab) Formal Models of Language 19 / 22

Spelling can be corrected using the noisy channel method

p(error |word) may be calculated from confusion tables created from
error annotated training data

e.g. substitution(x,w) confusion matrix

a b c d e ...

a 0 0 7 1 342 ...
b 0 0 9 9 2 ...
c 6 5 0 16 0 ...
d 1 10 13 0 12 ...
e 338 0 3 11 0 ...

if misspelled word is x = x1, x2...xm

and corrected word is w = w1,w2...wn

If proposed edit at xi is a substitution p(x |w) = substitution(xi ,wi)
count(wi)

similar equations for a deletion, insertion and transposition

Paula Buttery (Computer Lab) Formal Models of Language 20 / 22

Spelling can be corrected using the noisy channel method

For typo acress chosen word is

= argmax
word

p(word |error) = argmax
word

p(word)p(error |word)

candidate corr err x |w p(x |w) p(w) p(x |w)p(w)109

actress t - c|ct .000117 .0000231 2.7
cress - a a|# .00000144 .000000544 .00078
caress ca ac ac|ca .00000164 .00000170 .0028
access c r r|c .000000209 .0000916 .019
across o e e|o .0000093 .000299 2.8
acres - s es|e .0000321 .0000318 1.0
acres - s ss|s .0000342 .0000318 1.0

Paula Buttery (Computer Lab) Formal Models of Language 21 / 22

Noisy channel could be used to model comprehension

For many natural language applications, noisy channel models have
been surpassed by data hungry sequence-to-sequence neural models
(more in NLP course next year)

Natural language communication is an area where the model might
still yield research insights

Classic assumption in sentence processing: input to the parser is an
error-free sequence of words (e.g. Hale and Yngve)

This assumption is problematic because we are communicating across
a noisy channel

The ultimate interpretation of a sentence should depend on the
proximity of plausible alternatives under the noise model

This could be modelled in terms of insertions and deletions (just like
spelling correction)...

Paula Buttery (Computer Lab) Formal Models of Language 22 / 22

Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 24

Distributional semantics

You shall know a word by the company it keeps—Firth

Consider the following sentences about the rabbit in Alice in Wonderland:

Suddenly a white rabbit with pink eyes ran close by her.

She was walking by the white rabbit who was peeping anxiously into

her face.

The rabbit actually took a watch out of its waistcoat pocket and

looked at it.

‘Oh hush’, the rabbit whispered, in a frightened tone.

The white rabbit read out at the top of his shrill little voice the name

Alice.

We learn a lot about the rabbit from the words in the local context.

Paula Buttery (Computer Lab) Formal Models of Language 2 / 24

Distributional semantics

You shall know a word by the company it keeps—Firth

So far, we have been discussing grammars with discrete alphabets and
algorithms that have discrete symbols as input.

Many Natural Language Processing tasks require some notion of
similarity between the symbols.

e.g. The queen looked angry. Her majesty enjoyed beheading.

To understand the implication of these sentences we need to know
that the queen and her majesty are similar ways of expressing the
same thing.

Instead of symbols we can represent a word by a collection of key
words from its context (as a proxy to its meaning)

e.g instead of rabbit we could use

rabbit = {white, pink, eyes, voice, read, watch, waistcoat, ...}

Paula Buttery (Computer Lab) Formal Models of Language 3 / 24

Distributional semantics

You shall know a word by the company it keeps—Firth

But which key words do we include in the collection?

We could look at a ±n-word context window around the target word.

We could select (and weight) keywords based on their frequency in
the window:

rabbit = {the 56, white 22, a 17, was 11, in 10, it 9, said 8, and 8, to 7...}

This would become a little more informative if we removed the
function words:

rabbit ={white 22, said 8, alice 7, king 4, hole 4, hush 3, say 3, anxiously 2...}

queen ={said 21, king 6, shouted 5, croquet 4, alice 4, play 4, hearts 4, head 3... }

cat ={said 19, alice 5, cheshire 5, sitting 3, think 3, queen 2, vanished 2, grin 2...}

This is all just illustrative, we can of course, do this for all words (not
just the characters)— called distributional semantics.

Paula Buttery (Computer Lab) Formal Models of Language 4 / 24

Distributional semantics

We can replace symbols with vector representations

Two words can be expected to be semantically similar if they have
similar word co-occurrence behaviour in texts.

e.g. in large amounts of general text we would expect queen and
monarch to have similar word co-occurrences.

Simple collections of context words don’t help us easily calculate any
notion of similarity.

A trend in modern Natural Language Processing technology is to
replace symbolic representation with a vector representation

Every word is encoded into some vector that represents a point in a
multi-dimensional word space.

alice croquet grin hurried king say shouted vanished

rabbit 7 0 0 2 4 3 0 1

queen 4 4 0 1 6 1 5 0

cat 5 1 2 0 0 0 0 2

Paula Buttery (Computer Lab) Formal Models of Language 5 / 24

Distributional semantics

We can replace symbols with vector representations

Note that there is an issue with polysemy (words that have more than
one meaning):

E.g. we have obtained the following vector for cat:

cat = [5, 1, 2, 0, 0, 0, 0 2]

But cat referred to two entities in our story:

I wish I could show you our cat Dinah

I didn’t know that Cheshire cats always grinned in fact I didn’t know

that cats could grin

Paula Buttery (Computer Lab) Formal Models of Language 6 / 24

Similarity

The vector provides the coordinates of point/vector in the
multi-dimensional word space.

Assumption: proximity in word space correlates with similarity in
meaning

Similarity can now be measured using distance measures such as
Jaccard, Cosine, Euclidean...

contxt w1

co
n
tx
t
w
2

w1

w2

w3

θ12
θ23

e.g. cosine similarity

cosine(v1, v2) =
v1·v2

‖v1‖‖v2‖

Equivalent to dot product of
normalised vectors (not affected
by magnitude)

cosine is 0 between orthogonal
vectors

cosine is 1 if v1 = αv2, where
α > 0

Paula Buttery (Computer Lab) Formal Models of Language 7 / 24

Dimensionality reduction

Automatically derived vectors will be very large and sparse

In certain circumstances we might select dimensions expertly

For general purpose vectors we want to simply count in a large
collection of texts, the number of times each word appears inside a
window of a particular size around the target word.

This leads to very large sparse vectors (remember Zipf’s law)

There are an estimated 13million tokens for the English language—we
can reduce this a bit by removing (or discounting) function words,
grouping morphological variants (e.g, grin, grins, grinning)

Is there some k-dimensional space (such that k << 13million) that
is sufficient to encode the word meanings of natural language?

Dimensions might hypothetically encode tense (past vs. present vs.
future), count (singular vs. plural), and gender (masculine vs.
feminine)...

Paula Buttery (Computer Lab) Formal Models of Language 8 / 24

Dimensionality reduction

It is possible to reduce the dimensions of the vector

To find reduced dimensionality vectors (usually called word embeddings)

Loop over a massive dataset and accumulate word co-occurrence
counts in some form of a large sparse matrix X (dimensions n x n

where n is vocabulary size)

Perform Singular Value Decomposition on X to get a USV T

decomposition of X .







x11 . . . x1n
... X

...
xn1 . . . xnn






=









u11
...

...
...

... u2 . . . un

u1n
...

...
...





















s1 0 0 . . .
0 s2 0 . . .

0 0
.

...
...

... sn























v1n . . . v1n
. . . v2 . . .

. . .
... . . .

. . . vn . . .











Paula Buttery (Computer Lab) Formal Models of Language 9 / 24

Dimensionality reduction

It is possible to reduce the dimensions of the vector

Note S matrix has diagonal entries only.

Cut diagonal matrix at index k based on desired dimensionality (can
be decided by desired percentage variance): (

∑

k

i=1 si)/(
∑

n

i=1 si)







x11 . . . x1n
... X ′

...
xn1 . . . xnn






=









u11
...

...
... . . . uk

u1n
...

...















s1 0 0

0
. . . 0

0 0 sk













v1n . . . v1n

. . .
... . . .

. . . vk . . .







Use rows of U for the word embeddings.

This gives us a k-dimensional representation of every word in the
vocabulary.

Paula Buttery (Computer Lab) Formal Models of Language 10 / 24

Dimensionality reduction

It is possible to reduce the dimensions of the vector

Things to note:

Need all the counts before we do the SVD reduction.

The matrix is extremely sparse (most words do not co-occur)

The matrix is very large (≈ 106x106)

SVD is quadratic

Points of methodological variation:

Due to Zipf distribution of words there is large variance in
co-occurrence frequencies (need to do something about this e.g.
discount/remove stop words)

Refined approaches might weight the co-occurrence counts based on
distance between the words

Paula Buttery (Computer Lab) Formal Models of Language 11 / 24

Predict models

Predict models can be more efficient than count models

word2vec is a predict model, in contrast to the distributional
models already mentioned which are count models.

Instead of computing and storing a large matrix from a very large
dataset, use a model that learns iteratively, eventually encoding the
probability of a word given its context.

- The parameters of the model are the word embeddings.

- The model is trained on a certain objective.

- At every iteration we run our model, evaluate the errors, and then
adjust the model parameters that caused the error.

Paula Buttery (Computer Lab) Formal Models of Language 12 / 24

Predict models

Predict models can be more efficient than count models

There are two main word2vec architectures:

- Continuous Bag of Words CBOW: given some context word
embeddings, predict the target word embedding.

- Skip-gram: given a target word embedding, predict the context word
embeddings (below).

she helped herself to some tea and bread and butter and

p(wt−m|wt) p(wt+m|wt)
centre word wt

Paula Buttery (Computer Lab) Formal Models of Language 13 / 24

Predict models

skip-gram model predicts relationship
between a centre word wt and its context
words: p(context|wt) = ...

Predict context word embeddings based on
the target word embedding.

A loss function is used to score the
prediction (usually cross-entropy loss
function).

(Cross-entropy measures the information
difference between the expected word
embeddings and the predicted ones.)

Adjust the word embeddings to minimise
the loss function.

Repeat over many positions of t in a very
big language corpus.

Paula Buttery (Computer Lab) Formal Models of Language 14 / 24

Predict models

Distributional models have improved NLP applications

In general, distributional models have had a positive impact on NLP and
provided improvement over symbolic systems:

There has been a change in state-of-the-art for some applications:
(e.g. Google Translate)

Multi-modal experiments have become more straightforward (by
combining vector representations)

But these models are statistical (need very large amounts of data and
have to find a way to handle unseen words)

There has been a lot of hype and not much work on the problems the
distributional models can’t solve.

Paula Buttery (Computer Lab) Formal Models of Language 15 / 24

Predict models

Predict models versus count models

+ Predict models can be more efficient than count models because we
can learn iteratively and don’t have to hold statistics on the whole
dataset.

− Need to initialise the word embeddings (several possible methods).

± The size of the embeddings is a chosen parameter of the system
(usually a few hundred).

+ Predict models are learning structure without hand-crafting of
features.

− Dimensionality of the embeddings are assumed to capture meaningful
generalisations, but the dimensions are not directly interpretable.

Paula Buttery (Computer Lab) Formal Models of Language 16 / 24

Predict models

Predict models versus count models

After training, predict models are found to be equivalent to a count
model with dimensionality reduction.

Tuning hyper-parameters is a matter of much (often brute-force)
experimentation.

Predict models perform better than count models with dimensionality
on some tasks (but perhaps due to tuning hyper-parameters).

For some tasks count vectors without dimensionality reduction are the
most effective.

Paula Buttery (Computer Lab) Formal Models of Language 17 / 24

Word embeddings and humans

Word embeddings can correlate with human intuitions

Researchers test their word embeddings against datasets of human

similarity judgements:

For a test set of words, participants rate word pairs for relatedness
(e.g. Miller & Charles, Rubenstein & Goodenough)

A rank of relatedness can be drawn up between items in the test set.

A rank correlation between embeddings and human judgements can
be calculated.

Good embeddings have a correlation of 0.8 or better with the human
judgements.

Paula Buttery (Computer Lab) Formal Models of Language 18 / 24

Word embeddings and humans

Reasoning may be possible based on word embeddings

Mikolov et al. analogy puzzles:

Can we use word embeddings to solve puzzles such as:

man is to woman as king is to queen

Can we do vector-oriented reasoning based on the offsets between
words?

Paula Buttery (Computer Lab) Formal Models of Language 19 / 24

Word embeddings and humans

Reasoning may be possible based on word embeddings

Derive the vector between the pair of words man and woman and
then add it to king.

The nearest word to the region of vector space that results will be the
answer to the analogy.

Mikolov found that word2vec embeddings are good at capturing
syntactic and semantic regularities in language, and that each
relationship is characterised by a relation-specific vector offset.

Note that the space is very sparse and that there are word pairs for
which this does not work...

Paula Buttery (Computer Lab) Formal Models of Language 20 / 24

Word embeddings and humans

Relationship between embeddings and brain activity?

Humans have the capacity to translate thoughts into words, and to
infer others’ thoughts from their words.

There must be some mental representations of meaning that are
mapped to language, but we have no direct access to these
representations.

encoder
channel

p(y |x) decoderW

mental

representation

X

words

Y

words ′

W ′

mental

representation′

Do word embeddings provide a model that successfully captures some
aspects of our mental representation of meaning?

Paula Buttery (Computer Lab) Formal Models of Language 21 / 24

Word embeddings and humans

Relationship between embeddings and brain activity?

Natural language appears to be a discrete symbolic system.

The brain encodes information through continuous signals of
activation.

Language symbols are transmitted via continuous signals of
sound/vision.

Pereira et al. trained a system using brain imaging data and word
embeddings.

Demonstrated the ability to generalise to new meanings from limited
imaging data.

https://www.nature.com/articles/s41467-018-03068-4

Paula Buttery (Computer Lab) Formal Models of Language 22 / 24

https://www.nature.com/articles/s41467-018-03068-4

Word embeddings and humans

Relationship between embeddings and brain activity?

Brain image for

"apartment"

Decoder

Text semantic

vector for

"apartment"

Decoder

Decoder

Decoded

semantic

vector

Decoded

semantic

vector

Brain image for

"An apartment is a self-contained

home that is part of a building."

Brain image for

"Arson is the criminal act of

burning a building or wildland."

Text semantic

vector for

Text semantic

vector for

"An apartment is a self-contained

home that is part of a building."

"Arson is the criminal act of

burning a building or wildland."

Calculate

All 4 pairwise

correlations

a

b

Paula Buttery (Computer Lab) Formal Models of Language 23 / 24

	Course Admin
	What is a language?
	Regular grammars
	Phrase structure grammars
	Phrase structure grammar and natural language
	Context-free grammars
	Push down automata
	Mildly context-sensitive languages
	Deterministic context-free languages
	Non-deterministic context-free languages
	Chart parsing
	Human parsing complexity
	Dependency grammars
	Dependency parsing
	Grammar induction
	Gold's paradigm
	Categorial grammars
	categorial grammar learner
	Problems with Gold's paradigm
	Entropy
	Surprisal
	Conditional entropy
	Entropy rate
	Admin
	Distributional semantics
	Similarity
	Dimensionality reduction
	Predict models
	Word embeddings and humans

