What is this course about?
Formal Languages and Automata

v

Examining the power of an abstract machine
» Domains of discourse: automata and formal languages

» Formalisms to describe languages and automata
5 lectures for

v

Proving a particular case: relationship between regular

2017-18 Computer Science Tripos languages and finite automata

Part 1A Discrete Mathematics

by lan Leslie
Perhaps the simplest result about power of a machine.

Finite Automata are simply a formalisation of finite state

machines you looked at in Digital Electronics.
(© 2014,2015 AM Pitts; 2016-2018 IM Leslie (minor tweaks)

A word about formalisms to describe Syllabus for this part of the course

languages
Inductive definitions using rules
and proofs by rule induction.

v

» Classically (i.e. when | was young) this would be done

using production-based grammars. Regular expressions and pattern matching.

v

v

Finite automata and regular languages:
Kleene's theorem.

» Here will we use rule induction

v

The Pumping Lemma.
Excuse to introduce rule induction now, useful in other
things mathematics needed £or computer science

Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity Formal Languages

Theory, Semantics of Programming Languages

Part Il Natural Language Processing, Optimising Compilers,
Denotational Semantics, Temporal Logic and Model
Checking

N.B. we do not cover the important topic of context-free grammars, which prior to 2013/14 was
part of the CST IA course Regular Languages and Finite Automata that has been subsumed into

this course.

see course wer pace Lor relevant Tripos Questions

Alphabets Strings over an alphabet

An alphabet is specified by giving a finite set, X, whose A string of length n (forn = 0,1,2,...) over an
elements are called symbols. For us, any set qualifies as a alphabet X is just an ordered n-tuple of elements of X,
possible alphabet, so long as it is finite. written without punctuation.
X* denotes set of all strings over X of any finite length.
Examples:
» {0,1,2,3,4,5,6,7,8,9}, 10-element set of decimal digits. Examples:

» {a,b,c,...,x,y,z}, 26-element set of lower-case characters of
the English language.

» {S]SC{0,1,2,3,4,56,7,8,9}}, 21%element set of all
subsets of the alphabet of decimal digits.

» If 2 = {a,b,c}, then &, a, ab, aac, and bbac are
strings over X of lengths zero, one, two, three and four
respectively.

» If £ = {a}, then Z* contains &, a, aa, aaa, aaaa,
etc.

» N ={0,1,2,3,... }, set of all non-negative whole numbers is s =0 (the empty set) then T* — {8}
not an alphabet, because it is infinite. '

Non-example:

Concatenation of strings

The concatenation of two strings # and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If 2 = {a,b,c,...,z} and u,v,w € L* are u = ab, v = ra and
w = cad, then

vu = raab

uu = abab

wo = cadra
uowuov = abracadabra

NB. (uWw = uvw = ulvw) (any uyvw)
UE = U =€eu

The lenath of a8 string u € L* is denoted |ul. 0

Inductive Definitions

11

Formal languages

An extensional view of what constitutes a formal language is that it is
completely determined by the set of ‘words in the dictionary':

Given an alphabet X, we call any subset of Z* a (formal)
language over the alphabet X.

We will use inductive definitions to describe languages in terms of
grammatical rules for generating subsets of X*.

10

Axioms and rules

for inductively defining a subset of a given set U

» axioms | —— | are specified by giving an element a of U
a

which means that a is in the surset we are
defining
hihy --- h,

c

» rules

are specified by giving a finite subset {hy, ha,..., h,} of U (the
hypotheses of the rule) and an element ¢ of U (the conclusion
of the rule)

which means that c is in the sukset we are

defining £ all of hy, hy,..., h, are

12

Derivations

Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element u € U is in the subset is by definition:

a finite rooted tree with vertexes labelled by elements of U
and such that:

» the root of the tree is u (the conclusion of the whole
derivation),

» each vertex of the tree is the conclusion of a rule
whose hypotheses are the children of the node,

» each leaf of the tree is an axiom.

we'll draw with leaves at top, root at Bottom

13

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u € U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 14

» abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

» abaab is not in that subset (there is no derivation with that
conclusion — why?)

(In fact u € {a,b}* is in the subset iff it contains the same number of a and b symbols.)

15

Example

U= {a,b}* The universal set.
Axioms and R.ules:

axiom: ——

€

u u u v
rules: — (for all u,v € U)
aub bua uv
Example derivations:
£ £ €
€ ab ba ab
ab aabb baab
abaabb abaabb

14

rules or templates?

(for all u,v € D
uo

Is really a template for a (potentially) infinite
set of rules

16

Example: reflexive-transitive closure

Given a binary relation R € X X X on a set X, its
reflexive-transitive closure R* is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (vx € X. (x,x) € R*).

R* is equal to the subset of X X X inductively defined by

(for all x € X)

(for all (x,y) € R)

axioms

(% y) (x,x)

(xy) (y,2)

,2) (for all x,y,z € X)

rules

we can use Rule Induction to prove this, since S C X X X
being closed under the axioms & rules is the same as it
containing R, being reflexive and being transitive.

Rule Induction

Theorem. The subset I C U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S C U is also closed under the
axioms and rules, then I C S.

18

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S C U is closed under the axioms and rules if

» for every axiom ——, it is the case that a € S
a

» for every rule #, if h1,hy,...,h,, €S, then c € S.

c

20

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u € U for which there is a
derivation with conclusion u.

Derivation is a finite (larelled) tree with u at
root, axiom at leaves and each vertex the
conclusion of a rule whose hypotheses are the
children of the vertex

(We usually draw the trees with the root at
the rottom.)

19

E.a. for the axiom = rules

u u
for all u,v € {a,b}*

€ aub bua uo

the surset
{ue{ab}” | #.(u) = #(u)}

is closed under the axiom < rules.

21

NB. for a aiven set R of axioms = rules

{u e U |VS C U.(Sclosed under R) =—> u € S}

is closed under R (Why?) and so is the smallest
such (with respect to sugset inclusion, O)

This set contains all items that are in every set
that is cdlosed under R

Perhaps retter written as

N(VS C U.(S closed under R))

Is closed under R. .

Proof of the Theorem [(Pace 2.3 of notes]

Closure part

» I is closed under each axiom ——
a

Recause we can construct a derivation
witnessinag a € I ...

...which is simply a8 tree with one Nnode
containing a

24

Theorem. The subset I C U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S C U is also closed under the
axioms and rules, then I C S.

"the least surset closed under the axioms <
rules”

IS sOmetimes take as the definition of

"inductively defined sugset”

23

Closure part ()

hihy ...h,
c

» I is closed under each rule r =
Because i hihy...h, € I...

we have n derivations from axioms to each
h; and so ...

we ecan just make these the n children to
our rule r to form a BiG tree ...

which is a8 derivation witnessing ¢ € 1

25

Proof of the Theorem

sO we have closure under rules <= axioms

Now the "least such surset" part

We need to show, forevery S C U

(S closed under axioms and rules) = I C S

That is, I is the least sueset, in that any other
surset that is closed under the axioms < rules
contains 1.

26

Least Surset - Proot By Induction

P(n) £ "all derivations of heiaht n

have their conclusion in S"

Need to show:

» P(0) (consider these to Be sinale (axiom)
Node derivations)

» V(k <n)P(k)=P(n+1)

since if P(n) is true for all n, then all
derivations have their conclusion in S, and thus
every element of I is in S.

28

Least Surset

So we need to show that every element of I is
contained IN any set S C U which Is closed under
the rules < axioms

QR: How can we characterise an element of 1?7
A: For each element of I there is a derivation
that witnesses its memprership

So let’s do induction on the height of the
derivation (ie. the height of the tree)

27

Least Surset - Proof By Induction

P(n) £ "all derivations of heiaht n

have their conclusion in S"

> P(O)
trivially true since conclusion is an axiom
and S is closed under axioms

» V(k <n)P(k) = P(n+1):
Suppose V(k < n) P(k) and that D is a
derivation of height n 4+ 1 with, say,
conclusion ¢

29

VY i ¥
sor\ne rule ¢ ‘

But the derivations for the c; all have height
< n So the ¢; are all in S By assumption

and since S is closed under all axioms < rules,
ceS

so V(k<n) P(k)= P(n+1)

32

Rule Induction

Theorem. The subset I C U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S C U is also closed under the
axioms and rules, then I C S.

We use a similar approach as method of proof: given a property P(u)
of elements of U, to prove Vu € I. P(u) it suffices to show

» base cases: P(a) holds for each axiom ——
a

» induction steps: P(h1) & P(hy) & -+ & P(h,) = P(c)
hihy -+ hy
c

holds for each rule

34

Thus every elementt in I is in any S that is closed
under the axioms < rules that inductively
defined I.

Thus I is the least surset that is closed under
those axioms < rules.

33

Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

u u uvo

€ aub bua uo

Associated Rule Induction:
» P(e)
» Yu € I.P(u) = P(aub)
» Yu € I.P(u) = P(bua)
» Yu,vo € I. P(u) A P(v) = P(uv)

35

Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

For u € {a,b}*, let P(u) be the property
u contains the same number of a and b symbols
We can prove Vu € I. P(u) by rule induction:

» base case: P(¢) is true (the number of as and bs is zero!)

» induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It's not so easy to show Vu € {a,b}*. P(u) = u € I — rule induction for I is not much help for
that.)

36

Example L[CST 2009, Paperl, Question 3]
I C {a,b}* inductively defined ry

a

O

u

—

au

uv
— 7
buv

Asked to show

uecl=#,(u)>#u)

sO dO sO using R.ule Induction with
P(u) = #,(u) > #,(u)

37

Example L[CST 2009, Paperl, Question 5]

I C {a,b}* inductively defined ry

INn this case R.ule Induction says:

i£ © P(a)

<=0 Vu€I.P(u) = P(aun)

< o Yu,v € I.P(u) A P(v) = P(buv)
then Yu € I. P(u)

for any predicate P(u)

Example [CST 2009, Paperl, Question 3]

I C {a,b}* inductively defined ry

P(u) = #4(u) > #,(u)

(O) P(a) holds (1> 0)

37

37

Example L(CST 2009, Paperl, Question 5]
I C {a,b}* inductively defined ry

P(u) = #4(u) > #,(u)

O 1# P(u), then #,(au) =1+ #,(u)

37

Example L[CST 2009, Paperl, Question 3]
I C {a,b}* inductively defined ry

u uo

P(u) = #,(u) > #,(u)

(O £ P(u), then #,(au) =1+ #,(u)
> #,(u) > #(u) (rRecause P(u))
= #,(au)
sO P(au) holds as well, and thus P(u) = P(au)

37

Example L[CST 2009, Paperl, Question 5]

I C {a,b}* inductively defined ry

P(u) = #a(u) > #,(u)

O & P(u), then #,(au) =1+ #,(u)

> #a(u) > #y(u)

= #,(au)

(Recause P(u))

Example [CST 2009, Paperl, Question 3]

I C {a,b}* inductively defined ry

(2) 1# P(u) AP(v), then #,(buv) = #,(u) + $#,(v)

P(u) = #4(u) > #,(u)

2 ((#(u) +1) + (#o(v) +1))

so P(buv)

> # (buv)

(Why?)

37

37

Example L(CST 2009, Paperl, Question 5]
I C {a,b}* inductively defined ry

P(u) = #,(u) > #,(u)

i$ o P(a) v

0O Vu€l.P(u) = P(au) v

< @ Yu,o € I.P(u) ANP(v) = P(buv) v

then Yu € 1. P(u)

so for all u € I, we have #,(u) > #,(u)]

37

Collatz Conjecture

1 $n=0,1
f(n) =< f(nl2) it n>1 neven
f(3n+1) i#n>1, nodd
Does this define a total function f:IN — IN?

(norOdy kNOWS)

Can reformulate as a proglem aout inductively
defined sursets..

39

Example L[CST 2009, Paperl, Question 5]

I C {a,b}* inductively defined ry

P(u) = #,(u) > #,(u)

Hhouah h
athouch we avevu c1.P(u)

we dont have
VYu € {a,b}* .P(u) =>uecl

ea. P(aab) sut aab & I (\Why?)

Collatz Conjecture

1 $n=0,1
f(n) =< f(nl2) it n>1 neven
f(3n+1) i#n>1, n odd

Is the surset I C IN inductively defined By

equal to the whole of IN?

37

39

Regular Expressions

Concrete syntax: strings of symbols

» possibly including symbols to disambiguate the semantics

(brackets, white space, etc),

» or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =

if x > 100 then x

10

else £ (£ (x + 11))

in £ 1 end

(x v a1 u e

i

S

9 9 x)

40

42

Formal languages

An extensional view of what constitutes a formal language is that it is
completely determined by the set of ‘words in the dictionary':

Given an alphabet X, we call any subset of Z* a (formal)
language over the alphabet X.

41

Abstract syntax: finite rooted trees

» vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) — in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

» label of the root gives the ‘outermost form' of the whole phrase

let
E.g. for the expression
ongSIfidetZZML P fun/ \@
f/x \if f/ \1
>/ _\@
X/ \100 x/ \10 f/ \@
/' \
£+
/ N\

b d 11

43

R_eaular Expressions

A reaular expression defines a pattern of
sywrols (and thus a lanauaae).

Important to distinauish rRetween the lanauace
a particular regular expression defines and the

set of possiigle recular expressions.

We arout to ook at the second of these.

Some derivations of regular expressions
(assuming a,b € X)

a b
a b* € a b ab
€ ab* €la b* | e ab*
€|ab* €|ab* €|ab*
b a b
b* ab
a (b*) | e a b (ab)
a(b*) €la b* (ab)*
€ (a(0*)) | (ela) (b) |e ((ab)*)
e|(a(b™)) (ela) (b%) e|((ab)™)

44

6

Regular expressions (concrete syntax)

over a given alphabet X.

Let X/ be the 6-element set {€,D,|,*, (,)} (assumed disjoint from X)

uUu=Xxux)*
axioms: —
a € @
| r r s r s r
rules: — _— —
(r) r|s rs r*
(where a € Z and 7,5 € U)

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X) consists of

» binary operators Union and Concat
» unary operator Star

» nullary operators (constants) Null, Empty and Sym,,

(one for each a € L).

45

47

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X) as an ML datatype declaration:

Union of (“aRE) * ("aRE)
Concat of (“aRE) * ("aRE)

datatype 'aRE =
|
| Star of ‘aRE
|
|
|

Null
Empty
Sym of 'a

(the type 'aRE is parameterised by a type variable ‘a standing for the alphabet L)

48

Relating concrete and abstract syntax

for regular expressions over an alphabet X, via an
inductively defined relation ~ between strings and trees:

a~ Sym, € ~ Null @ ~ Empty
r~ R r~ R s~ S
(r) ~R r|s ~ Union(R,S)
r~ R SNS r~ R

rs ~ Concat(R, S) r* ~ Star(R)

50

Some abstract syntax trees of regular expressions
(assuming a,b € X)

1. 2. 3.
Union Concat gnion
Null Concat Union Star |Null Star
Sym. Star|Null Sym. sy Concat
m ar |Nu m m onca
y a | y a y b / \
Sym,, Sym, Sym,

(cf. examples a few slides previous)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Sym,, Star(Sym,)))
2. Concat(Union(Null, Sym), Star(Sym,))
3. Union(Null, Star(Concat(Sym,, Sym,)))

49

For example:

e|(a(b*)) ~ Union(Null, Concat(Sym,, Star(Sym,)))
€|lab® ~ Union(Null, Concat(Sym ,, Star(Sym,)))
e|lab® ~ Concat(Union(Null, Sym), Star(Sym,))

Thus ~ is a ‘many-many’ relation between strings and trees.

» Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ~ parse(r).

» Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying

pp(R) ~ R. |

(See CST IB Compiler construction course.)

51

Operator precedence £0Or reaular expressions

Star > Concat > Union |

So
glab* stands for &|(a(b*))

Union (Null, Coneat (Sym,, Star (Symp))

52

From now on, we will rely on operator
precedence (% associativity) conventions in the
conerete syntax Of regular expressions to
allow us t0 map unampriGuously to thelir
aBstract syntax

associativity less important (in some sense)
than precedence Because the meaning
(semanttics) of conecatenation and union is
8lwaYs 85SOQIBTIVE cut not true o ail overstors, ea. division

sO abc has the same arstract syntax as (ab)c,
But different arstract syntax from a(bc), But
all of these have the same semantics.

54

Associativity for reaular expressions

Concat = Union are left associative

So
abc stands for (ab)c

a|blc stands for (a|b)|c

Matching

Each regular expression r over an alphabet X determines a
language L(r) C X*. The strings u in L(r) are by
definition the ones that match r, where

» u matches the regular expression a (where a € L) iff u = a
» u matches the regular expression € iff u is the null string €
» no string matches the regular expression @

» u matches r|s iff it either matches 7, or it matches s

» u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

» u matches r* iff either u = &, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

53

55

Inductive definition of matching

U = * X {regular expressions over L}
AXiOMS: | abstract syntax trees |

" (a,a) (¢,€) (e,17)
rules:

(u,1) (u,s)
(u,7|s) (u,7|s)
(v,71) (w,s) (u,1) (v, 1)
(vw, rs) (uv,r")

(No axiom/rule involves the empty regular expression @ — why?) s

Questions Computer Scientists ask

(a) Is there an algorithm which, civen a string
u and a regular expression r, cOmputes
whether or not u matches r?

iNn other words, decides, for any r, whether
u € L(r)

An alaorithm? what's an alcorithm? | mean
what is it in 8 mathematical sense?

leads us to define automata which "execute
alaorithms”
next chunk of the course..

58

Examples of matching
Assuming . = {a, b}, then:

» a|b is matched by each symbol in X

v

b(a|b)* is matched by any string in * that starts with a ‘b’

v

((a|b)(a|b))* is matched by any string of even length in £*

v

(a|b)*(a|b)* is matched by any string in £*

v

(e|a)(e|b) |bb is matched by just the strings €, a, b, ab, and bb

v

@b|a is just matched by a

57

Questions Computer Scientists ask

(b) In formulating the definition of recular
expressions, have we missed out some
practically useful Nnotions of pattern?

Mes

Mes ecause there are convenient notations
like [a — z] to mean a|b|c...|z and complementt,
~ 7, which is defined to match all strinas that r
does not. Look at the unix utility arep.

59

Questions Computer Scientists ask

(b) In formulating the definition of regular
expressions, have we missed out some
practically useful notions of pattern?

Mes and Nlo

Mes recause there are convenient notations
like [a — z] to mean a|b|c...|z and complementt,
~ 7, which is defined to match all strinas that r
does Nnot. Look at the unix utility arep.

No recause such conveniences dont allow us to
define lanauages we can’t already define

Why Not include them in our Basic definition??

Because they Give us more rules to analyse! .

Questions Computer Scientists ask

(d) Is every lancuace (susset of L*) of the
form L(r) $or some r?

Pretty clearly no.

IN fact even sivple languaces like a’b",Vn € N
or well-eracketed arithmetic expressions are
NOt regular

we will derive and use the Puwmping Lenmma to
show this

61

Questions Computer Scientists ask

(c) Is there an alaorithm which, civen two
reaular expressions r and s, computes
whether or not they are equivalent, in the
sense that L(r) and L(s) are equal sets?

We will answer this when we answer (a).

60

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of £*) of the form L(r) for
some 17

62

Finite Automata

63

Why?

» we are claiming that a deterministic finite
automata (DFA) is an emprodiment of an
alaorithm

NnoN—deterministic finite automata with
e—transitions (NFA®sS) map on to our
proelem (matching regular expressions)
Mmore naturally ...

...s0 we will produced the NFA®s we want
and then rely on the fact that for each
there is an eauivalent DFA.

65

We are arout to descrire some different
types Of finite automata.

The @ame plan is as follows:

v

define (non-deterministic) finite automata
IN general

define deterministic finite automata (as a
special case)

define non-deterministic finite automata
with e—transitions

show that from any non-deterministic
finite automaton with e—transitions we
can mechaniecally produce an equivalent
deterministic finite automaton

64

Example of a finite automaton

a

M = @/\C/v

b

set of states: {qo, 91,92, 93}
input alphabet: {a,b}

transitions, labelled by input symbols: as indicated by the above
directed graph

start state: go

accepting state(s): g3

66

Language accepted
by a finite automaton M

» Look at paths in the transition graph from the start
state to some accepting state.

» Each such path gives a string of input symbols, namely
the string of labels on each transition in the path.

» The set of all such strings is by definition the
language accepted by M, written L(M).

Notation: write g — g’ to mean that in the automaton there is a
path from state g to state g’ whose labels form the string u.

(N.B. g =* q’ means g = q'.)

67

Example of an accepted language

a

M = @@J

b

Claim:
L(M) = L((alb)*aaa(alb)*)
set of all strings matching the
regular expression (a|b)*aaa(a|b)*

(gi (for i =0,1,2) represents the state in the process of reading a string in which the last i
symbols read were all a's)

68

Example of an accepted language

a

M @@

b

For example

» aaab € L(M), because g 2aabs q3

» abaa & L(M), because Vq(qo abaa g < q=q)

68

Non-deterministic
finite automaton (NFA)

is by definition a 5-tuple M = (Q, %, A, s, F), where:
» Q is a finite set (of states)
» X is a finite set (the alphabet of input symbols)
» Ais a subset of Q X X X Q (the transition relation)
» s is an element of Q (the start state)
» F is a subset of Q (the accepting states)

Notation: write “g — ¢’ in M" to mean (q,a,4’) € A.

69

WHhy do we say this is non-deterministic?

A, the transition relation specifies a set of
next states for a aiven current state and
alven iINnput sywmeol.

That set might have O, | or more elementts.

70

So we define a deterministic finite automata
sO that A is restricted to specify exactly one
next state for any aiven state and iNnput symrol

we do this BY saying the relation A has to re a
function § from Q X X to Q

72

Example of an NFA

Input alphabet: {a,b}.
States, transitions, start state, and accepting states as shown:

b b

For example {q | q1 4 q} = {q2}
b
{91 —q} =0
{9190 = q} = {q0,91}.

The language accepted by this automaton is the same as for our first automaton,
namely {u € {a,b}* | u contains three consecutive a's}.

71

Deterministic finite automaton (DFA)

A deterministic finite automaton (DFA) is an NFA
M = (Q,L,A,s, F) with the property that for each state
q € Q and each input symbol a € Xy, there is a unique

state g’ € Q satisfying g — ¢’

Ina DFA' A C Q X X X Q is the graph of a function Q X & — Q,
which we write as § and call the next-state function.

Thus for each (state, input symbol)-pair (g, a), d(g, a) is the unique
state that can be reached from g by a transition labelled a:

Va' (g > q < g =6(q,q))

73

Example of a DFA... but this is an NFA

with input alphabet {a, b} with input alphabet {a,b, c}

a

MA)) M @@

b

M is non-deterministic, because for example {q | g0 — g} = @.

next-state function:
sO alpharet matters!

74

An NFA with e-transitions (NFA?)
M= (Q % A,s F,T)
is an NFA (Q, X, A, s, F) together with a subset
T C Q X Q, called the e-transition relation.

Now let’'s make things a Rit more interesting
(well complicated) ...

We are aoing to introduce a new form of Example:

transition, an e—transition which allows us to '

More £rom one state to another without

readinGg a syveol.

These (in general) introduce Nnon-determinism Notation: write “g = ¢’ in M" to mean (q,4’) € T.

all By themselves. (N.B. for NFA®s, we always assume & & ¥.)

76

Language accepted by an NFA*®

M= (Q,L,A,s,F,T)
» Look at paths in the transition graph (including
e-transitions) from start state to some accepting state.
» Each such path gives a string in £*, namely the string
of non-¢ labels that occur along the path.
» The set of all such strings is by definition the
language accepted by M, written L(M).

Notation: write g = g’ to mean that there is a path in M from state
g to state g’ whose non-¢ labels form the string u € £*.

78

Sets of Languaces Accepted By Finite
Automata

» every DFA is an NFA (with transition
MaPPING A BeinG 38 Nnext-state function §)

» every NFA is an NFA? (with empty
e—transition relation)

clearly
L(DFA) C L(NFA) C L(INFA®)

BRUt
L(]D]F./A) C L(]NIFA) C L(IN]FAG)???

80

An NFA with e-transitions (NFA?)
M = (Q,%,A,s,F,T)
is an NFA (Q, X, A, s, F) together with a subset
T C Q X Q, called the e-transition relation.

Example:

For this NFA® we have, e.g.: qo = q2. 9o = q3 and qo = q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)*(aa|bb)(a|b)*.

79

NFA¢? accepts i£ there exists a path..
DFA: path is determined one syymeol at a time

Let QQ Be the states of some NFAZ What if
we thought, one syyrol at a time, arout the
states we could re in, Or more precisely the
sugset Of Q containing the states we could e
iN

Then we could construct a8 new DFA whose
states were taken from the powerset of R
from the NFA®

81

Surset Construction

Given an NFA? M with states Q construct a
DFA PM whose states are sursets of the
states of M

the start state in PM would Be a set
contalning the start state of M together
with any states that can Be reached ry
e—transitions from that state.

accepting states in PM would e any surset
contalning an accepting state of M

alpharet is the same as the alpharet of M
That just leaves &

82

A word about @ in the subset
construction
Potential for confusion

» The DFA has a state which corresponds to the empty
set of states in the NFA® which we have designated
as @.

» Once you enter this state we get stuck in it. Why?
» Could rewrite (next slide)

84

Example of the subset construction

next-state function for PM

a a b
%) %) %)

@ {90} |{90.91,92} {492}
¢ {91} {91} %

{92} % {92}
{9091} {40, 91,92} {492}
{9092} | {40, 91,92} {92}

{pva} | A} {42}

b {90, 91,92} | {90, 91,92} {42}

83

DFA State | subset of NFA? | a b
S1 @ S1 $1
S> {110} Ss S4
S3 {91} S3 S1
S4 {g:} S2 S4
Ss {610,111} Ss S4
Se {qorlh} Ss S4
Sy {lh,qz} S3 Sy
Ss {110,171,172} Ss S4

Noting that Sg is the start state (why?) we could eliminate
states that can't be reached (i.e. S,, Ss, S¢ and S7; and
thence S3) if we cared. Here we don't. (Care that is).

85

Theorem.

is a
the

For each NFA* M = (Q, X, A,s, F, T) there
DFA PM = (P(Q), %L, d,s’, F’) accepting exactly
same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

>

>

>

set of states is the powerset P(Q) = {S | S C Q} of the set
Q of states of M

same input alphabet X as for M

next-state function maps each (S,a) € P(Q) X L to
5(S,a)2{q€Q|3g€S.q=q in M}

start state is s’ 2 {q' € Q| s = ¢’}

subset of accepting satesis F/ = {S € P(Q) | SNF # @}

To prove the theorem we show that L(M) C L(PM) and L(PM) C L(M).

86

Consider a strinag aja;...a, € L(PM), ie. is
accepted By our DFA PM

Then we have

az

s s B .S, S,€F inPM

W) W w

qo = 11 = dn—1 = q.€ F inM
e

S

sO may...a, € L(M)
so L(PM) C L(M)

88

Consider a strinag aja...a, € L(M),ie. is
accepted By our NFA: M

Then we have

s =% q1 =2 .= g, € F inM
m Mm Mm
s s, & ... s, €F inPM

sO aq1az...a, € L(PM)
so L(M) C L(PM)

So we have shown

L(M) C L(PM) and L(PM) C L(M)

sO that
L(M) = L(PM)

where PM is specified By M throuch surset
construction.

Thus for every NFA? there is an equivalent

DFA

87

89

Theorem. For each NFA* M = (Q, L, A, s, F, T) there
isa DFA PM = (P(Q), %, d,s’, F’) accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

> set of states is the powerset P(Q) = {S | S C Q} of the set
Q of states of M

» same input alphabet X as for M

> next-state function maps each (S,a) € P(Q) X L to
5(S,a)2{q'€Q|3IgE€S.q= ¢ in M}

> start stateis s’ = {q' € Q| s = q'}

subset of accepting sates is F/ =2 {S € P(Q) | SNF # @}

v

To prove the theorem we show that L(M) C L(PM) and L(PM) C L(M).

Kleene’s Theorem

90

92

At this point we should think of

» the set of all lanauace {L(r)} defined ry a
sOme reaular expression 7, each lancguace
ReiNG the set of strings which match some
reaular expression r

» the set of all lanauaces {L(M)} accepted Ry
sOme determinisitic finite automaton M

91

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching 7 is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression 7.

93

The first part requires us to demonstrate
that for any recular expression r, we can
construct a DFA, M with L(M) = L(r)

We will do this By demonstrating that for any r
we can construct a NFA? M’ with L(M’) = L(r)
and rely on the sueset construction theorem
t0 aive us the DFA M.

We consider each axionm and rule that define
reaular expressions

94

Recall: Regular expressions (abstract
syntax)

(conerete syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X) consists of

» binary operators Union and Concat
1’1|1’2 rr;

» unary operator Star r*

» nullary operators (constants) Null, Empty and Sym,,
(one for each a € L). € @ a

96

Kleene’'s Theorem Part a (The Fun Part)

For any reaular expression r we can Build an
NFA¢ M such that L(r) = L(M)

We will work on induction on the depth of
arstract syntax trees

95

(i) Base cases: show that {a}, {€} and @ are regular languages.

(i) Induction step for r1|ry: given NFA®s My and M3, construct
an NFA? Union (M, M) satisfying

L(Union(My, Mz)) ={u|u € L(M1) Vu € L(M;)}

Thus if L(rl) = L(Ml) and L(Tz) = L(Mz), then L(r1|r2) = L(llnion(Ml,Mz)).

(iii) Induction step for rir2: given NFA®s My and My, construct an

NFA® Concat(Mj, M>) satisfying

L(Concat(My, M2)) = {uiuz | u1 € L(M1) &
u € L(Mz)}

Thus L(r172) = L(Concat(M, M)) when L(r1) = L(M1) and L(r2) = L(Mz).

(iv) Induction step for r*: given NFA® M, construct an NFA®
Star(M) satisfying

L(Star(M)) = {wuz...u, | n > 0 and each u; € L(M)}
Thus L(r*) = L(Star(M)) when L(r) = L(M).

97

NFAs for regular expressions a, €, @

: just accepts the one-symbol string a

)
just accepts the null string, &

accepts no strings

98

For example,

if My = —(%)
and My =|)00

then Union(M,, M) =

100

Union(M;, M,)

S50 M
e\@ M,

accepting states = union of accepting states of My and M,

99

N what follows, whenever we have to deal with
two machines, say M; and M, together, we
assume that their states are disjoint.

£ they were not, we could just rename the
states of one machine to make this so.

Also assume that for r; and r, there are
machines M; and M, such that L(r;) = L(My)
and L(r,) = L(M,)

101

Construction for Union(ry,12)

Assume there are two machines My and M,
with L(1’1) = L(Ml) and L(Tz) = L(Mz)

States of new machine M = Union(M;, M,) are
all the states in M; and all the states in M,
together with a8 new start state with
e—transitions to each of the (old) start states
of M, and M,.

Accept states of M are the all accept states in
M; and all accept states in M,.

The transitions of M are all transitions in M;
and M, along with the two e—transitions £rom
the new start state

102

Can M accept anything more?

The only way "out of" s, the start state of M,
Is elther to the start state of M; or the start
state of M,

So no, L(M) = (L(M;) U L(M,))

104

M accepts any strinas that M; accepts:

i$ u € L(M;) then s = g1 Where sp is start
state and g1 an accept state of M; respectively.

But then in M, s = g1, Where s is our new
start state since s — sy.

so u € L(M). Siwilar araument for M
accepting any string that M, accepts

sO (L(Ml) U L(Mz)) g L(Union(Ml,Mz))

103

Concat(My, M>)

oM

accepting states are those of M,

105

For example,

IfM1:

and My = (O

then Concat(M;, M) =

106

Star(M)

W M

N

&

the only accepting state of Star(M) is qo

(N.B. doing without gg by just looping back to s
and making that accepting won't work — see exercises)

108

Construction for M = Concat(M;, M)

Make an e—transition $rom every accept state
INn M; to the start state of M,.

Start state of M is the start state of M;y;
accept states of M are the accept states of M,

107

For example,

if M =

then Star(M) =

109

Construction for Star(r;), M = Star(M;)

Create a new state, say s which will Be the
start state, and the only accepting state of M.

The transitions of M are all the transitions of
M; together with an e—transition from s to
the (old) start state of M; and e—transitions
from every (old) accepting state of M; toO s.

Clearly, M accepts ¢ since s, the start state, is
also an accepting state

NnoNempty strinas accepted By M have t0O Re
formed of componentts, each Of which is
accepted ry M;

so L(M) = L(ry)

110

Example

Regular expression (a|b)*a Concat

a

Stlar Sym

whose abstract syntax tree is Union

Sym Sym,,

a

is mapped to the NFA¢ Concat(Star(Union(M,, My)), M,;) =

112

(i) Base cases: show that {a}, {e} and @ are regular languages.

(i) Induction step for r1|ry: given NFA®s My and M3, construct
an NFA? Union(My, M>) satisfying

\L(Union(My, M)) = {u | u € L(My) V u € L(Mp)}|
Thus if L(r1) = L(Mi) and L(r2) = L(Ma), then L(r1|r2) = L(Union(My, M>)).

(iii) Induction step for rirp: given NFA®s My and M>, construct an

NFAé Concat(My, M) satisfying

L(Concat(Ml, Mz)) = {u1u2 | u; € L(Ml) &
uz € L(Mz)}

Thus L(r172) = L(Concat(My, M;)) when L(r1) = L(Mz) and L(r2) = L(M>).

(iv) Induction step for r*: given NFA? M, construct an NFA?
Star(M) satisfying
L(Star(M)) = {uuz...u, | n > 0 and each u; € L(M) }

Thus L(r*) = L(Star(M)) when L(r) = L(M).

111

Some questions

(a) Is there an algorithm which, given a string u# and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of £*) of the form L(r) for
some 17

113

Decidability of matching

We now have a positive answer to question (a). Given
string u and regular expression r:

» construct an NFA? M satisfying L(M) = L(r);

» in PM (the DFA obtained by the subset construction) carry out
the sequence of transitions corresponding to u from the start
state to some state g (because PM is deterministic, there is a
unique such transition sequence);

» check whether g is accepting or not: if it is, then
u € L(PM) = L(M) = L(r), so u matches r; otherwise
u ¢ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2"
states if M has n. This makes the method described above potentially inefficient — more efficient
algorithms exist that don’t construct the whole of PM.)

114

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

vy

116

Exponential Blow-up

i$ NFA® M has n states then the DFA made By
supset construction, PM has 2" states, since its
states are the memerers of the powerset of M.

Minimisation of states in PM By:

» removing all states which are not reachaile
(By 8Ny string) from the start state.

» verae all compatigle states. Two states are
compatiele if (i) they are roth accepting or
BOth NoN-accepting; and (i) their transition
functions are the same.

» Update transition functions to take
account of meraed states. Repeat.

115

Example of a regular language

Recall the example DFA we used earlier:

a

v @/\C/v

b

In this case it's not hard to see that L(M) = L(r) for

r = (a|b)*aaa(a|b)*

118

Example

L(M) = L(r) for which regular expression #?
Guess: ¥ = a*|a*b(ab)*aaa*

since baabaa € L(M)
but baabaa & L(a*|a*b(ab)*aaa™)

We need an algorithm for constructing a suitable r for each M
(plus a proof that it is correct).

WRONG!

119

Prove this Lemma By induction on 4t of
elemencts In S
Also take care to examine case where g = g’ !

Base case S =0
Given states ¢q,4' € M, i$
q—=4q
holds for just a = ay, ay, ..., a; then can define

o0 s)a ajlaz|...|lax $gF#q
r = i /
q.9 a:a1|a2|...|ak|€ |-Pq:q

121

Lemma. Given an NFA M = (Q, L, A, s, F), for each
subset S C Q and each pair of states q,q" € Q, there is a

regular expression rs g satisfying

S . u . . .
L(r,,) ={u€X*| q — g’ in M with all inter-
mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
g1,---,qx say, then L(M) = L(r) with r = r{| - - - |r where

ri:rsQ,ql. (i=1,...,k)

(in case k = 0, we take r to be the regular expression @).

120

Induction Step:

» S has n 41 elemvents.
> Pick sOwe g € S
» consider S~ = S\ {g0} (S without the state

q0)
» can apply Induction hypoth tO S~ since S has
n elements

Can we express ”3 g IN terms of thinas only
depending on S—7

122

S — .S™ S— S— S—
What's in 1‘; ” ? Yod = Toq | (rtMo [rﬂo,qo]*rqo,q’)

> we micht Be arle to cet from g to g’
throuch S avoidina gg, and

» we might Be aBle 10 get from g to gy, then
from go Back to itself an argitrary numeer
of times, then to ¢’

For the first of these we have rs;], By
hypothesis. (I# there is NO path, this will Be @)

S— r.s— 5— all transitions in S~ qo excluded from S—
For the second we have r, . [ry 1" 7. A
A0 2 A0A0Tqoq g and q’ can Be in or out of S~
123 124
An Example
M =

Demonstrates dont always have to follow
induction to eitter end (But when in doust..)

Construction works rackwards to the
iInduction; we start with all the states and
remove one at a time.

Looking for rg,g’l’z}

We et to choose the state to remove in
each step.

Strateay: choose a state that disconnects the
automaton as much as pOssikle

125 126

{0,1,2}

Looking for 7 4

By direct inspection we have:

e 1 2 e 1 2
0 0 a* a*b
1 @ e a 1

2 |aa* a*b e 2

(we don’t need the unfilled entries in the tables)

126

We want r{01 2}

Remove 2 from §O, 25

o & g 1 ey Iyl g
T T A e (0%

oo I (P (2o e o
= ¢ | (a [& a')
= e | (aa*b)

127

We want r{()l 2}

Remove | from O, [, 25

0,1,2 0,2 02 0,2 02
oy B e B B O e j)
= o | (ab [F9) 0

127

We want r{01 2}

Remove 2 from §0O, 25

O B (7 G o rljg,zh
= a | (a'b [e|](aa*b)]* ¥
o B T O S 2 R o0
= ¢ | (a [e]* a*b)

e | (aa*b)

127

We want r{01 2}

Remove 2 from §O, 25

ré((),l 2} é rg’(()),Z} | (1"({):22} [1{0 2}] {0 2})
= o | (ab [e](aa*b)]" rf%2}>
We want r{°12}
Remove 2 from §O, 25
O AR S IO PR G e P
| (ab [el(aab)] 02
VIR N B, P oY)
= 0 | a* (e) aa*

127

We want r{()l 2}

Remove 2 from §0O, 25

{0 1,2} A {0,2} | (r{O,Z}
0 0 - 0,0 0,1
= a | (a'b
0,2 0 0
ri{ 0 b2 "f,o} | (7{2}
{0 1,2}

We want rg
Remove 2 -Pror\n {0, 25

AR S
= a | (a'b

0,2 0 0

”1{0} = 7’1{ 0} | (’{2}
%) | a*

%

aaa

[ri 3
] (aa*b)]*

22)

[ri 3]

le|(aa™b)]”

[1’2 2}]
(e)*

{02})
{02})

T10

Ty, 0})

127

{02}
{02 ;

10

Ty, 0})
aa*

127

We want r{01 2} We want r{()l 2}

Remove 2 from §O, 25

01,2 0,2 0,2 0,2} 14 0,2
6{(())1 2} 2 rg’(()),z} { ((ré(i,z} [|[(1{0 2}] g {0 z}g ”é,o } o2 ”é,o } | (1,{ } 1,1{,1 }] { })
= a* a*b [e|(aa*b)]* aaa
= a* | (a*b [e|(aa*b)]* aaa*)
0,2 0 0 0
”i{o boe ”1{ 0} | ("1{,2} [”i }] T, 0})
= 0 | a* (e) aa*
= aaa*
We want it Some questions
012} o {02} (02 (02}, {0 2 (a) Is there an alg(?rithm which, given a string u and a
To,0 = Typ | o1 11]) regular expression r, computes whether or not u
matches r?
= 4a | (a*b [e](aa*b)]* aaa™) (b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of £*) of the form L(r) for
some 17

127 128

Which might have a simpler form..

Not(M)

Given DFA M = (Q, %, 4, s, F),
then Not(M) is the DFA with

» set of states = Q

» input alphabet = X

» next-state function = ¢
» start state = s

» accepting states = {q € Q | g € F}.
(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not (M) iff it is not accepted by M:

L(Not(M)) ={ucXZ* |u g L(M)}

129

Regular languages are
closed under intersection

Theorem. If Ly and L, are a regular languages over an
alphabet X, then their intersection
LiNnL,={u€X*|u€ L &u € Ly} is also regular.

Proof. Note that L1 N Ly = Z* \ ((X*\ L1) U (£*\ Lp))
(cf. de Morgan's Law: p& g = —(—p V —q)).

Soif L1 = L(M3) and Ly = L(M3) for DFAs Mj and M,
then L1 N Ly = L(Not(PM)), PM subset-constructed from M,
where M is the NFA? Union(Not(Mj), Not(My)). O

[It is not hard to directly construct a DFA And(Mj, M;) from M; and M, such that
L(And(My,Mz)) = L(M;1) N L(M;) — see Exercise 4.7.]

131

S0 regular lancuaaes are closed under
complementation:

» Glven a reaular expression r

» Build DFA M such that L(M) = L(r) (Kleene
(8

» Build Not(M) $from M (just defined)

» £ind ~ r such that L(~r) = L(Not(M))
(Kleene (R))

L(~r)={ueXue L(r)}

130

Regular languages are
closed under intersection

Corollary: given regular expressions 7y and r,,there is a
regular expression, which we write as 7y & r, such that

a string u matches ry & r, iff it matches both 7,
and r,.

Proof. By Kleene (a), L(r1) and L(ry) are regular languages and
hence by the theorem, so is L(r1) N L(r2). Then we can use

Kleene (b) to construct a regular expression r1 & r» with

L(I’l &:1‘2) = L(I’l) ﬂL(rz).]

132

Some questions Equivalent regular expressions

Definition. Two regular expressions r and s are said to be

(a) Is there an algorithm which, given a string u# and a equivalent if L(r) = L(s), that is, they determine
regular expression r, computes whether or not u exactly the same sets of strings via matching.
matches r?

(b) In formulating the definition of regular expressions, For example, are b*a(b*a)* and (a|b)*a equivalent?
have we missed out some practically useful notions of

Answer: yes (Exercise 2.3)
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of £*) of the form L(r) for
some r7?

How can we decide all such questions?

133 134

Note that L(r) = L(s)

iff L(r) C L(s) and L(s) C L(r)

iff (Z*\ L(r))NL(s) =@ = (*\ L(s)) N L(r) That aives us our answer 1o Question (o)
ff L((~r) &) = © = L((~s) &7) (which is yes),

iff L(M) =@ = L(N)

where M and N are DFAs accepting the sets of strings matched by the

regular expressions (~r) & s and (~s) & r respectively.

, , o Now onto the last of ocur aquestions..
So to decide equivalence for regular expressions it suffices to

check, given any DFA M, whether or not it accepts any string at all.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.

135 136

The Pumping Lemma

137

Examples of languages that are
not regular

» The set of strings over {(,),a,b,...,z} in which the
parentheses ‘(" and ')’ occur well-nested.

» The set of strings over {a,b,...,z} which are
palindromes, i.e. which read the same backwards as
forwards.

» {a"b" | n >0}

139

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of X*) of the form L(r) for
some r7?

138

The Pumping Lemma

For every regular language L, there is a number £ > 1
satisfying the pumping lemma property:
All w € L with |w| > £ can be expressed as a
concatenation of three strings, w = uyvu,, where uq, v
and u, satisfy:

> o] > 1 (e v#e)

> |urv| < £

» forallm > 0, u19"u, € L
(i.e. uquy € L, ugouy € L [but we knew that anyway],

ujvovuy € L, ugvovuy € L, etc.)

Note similarity to construction in Kleene (8)

140

Suppose L = L(M) fora DFA M = (Q, L, J,s, F).
Taking £ to be the number of elements in Q, if n > £,
then in

ay az ap an
S:goﬁqlﬁqzooo%qéooo%qneF

~
£+1 states

dos---,q¢ can't all be distinct states. So g; = q; for some
0 <i < j < £ Sothe above transition sequence looks like

v

u x U
s = qoilikqi = qjizikqn € F
where
A A A
ui1=4ay...4; v:ai+1...a]- uzza]'_H...an
141
Examples

None of the following three languages are regular:

(i) L 2 {a"b" | n > 0}

143

How to use the Pumping Lemma
to prove that a language L
is not regular

For each £ > 1, find some w &€ L of length > £ so that

no matter how w is split into three, w = uqou,,
with |uv| < € and |v| > 1, there is some 1 > 0 » (})
for which u1v™u, is not in L

142

L; = {a"b" | n > 0}

For each £ > 1, take w = a’b® € L4
I# w = wou, with |uv| < €< |v| > 1, then for
sOome r and s:

> ulzar
»rv=a°, Withr+s<fands>1
- Uy = al—r—sbf

sOo w1 ?'uy = a"e at~"pt = at—spt

But a’—b*¢ L, , sO, By the Pumpina Lemma, Ly is
NOt 8 regular languace

144

Examples

None of the following three languages are regular:

(i) L 2 {a"b" | n > 0}

[For each £ > 1, atb® € Ly is of length > £ and has property (}).]

(i) Ly = {w € {a,b}* | w a palindrome}

[For each £ > 1, a’ba® € Ly is of length > £ and has property (}).]

(i) Ls = {a” | p prime}

145

Examples

None of the following three languages are regular:

(i) Ly £ {a"b" | n > 0}

[For each £ > 1, atb® € Ly is of length > £ and has property (}).]

(i) Ly 2 {w € {a,b}* | w a palindrome}

[For each £ > 1, a’ba’ € Ly is of length > £ and has property (1).]

(iii) Ly = {a” | p prime}
[For each £ > 1, we can find a prime p with p > 2€ and then a? € L3 has length > £ and
has property ().]

147

L; = {a” | p prime}

Foreach £ >1let w=a’ € L3, pprivie = p > 2¢

I# w = uou, with |uo| < €< v >1...

then mp=a v=a° u, =afP7 """
Withs>1sr+s</
SO o’ Pup, = a’ as(p—s) alP 75 = a(p_s)(5+1)

But s >1=>s+12>2
and (p—s)>(2—£4)>1= (p—s)>2

so gP—s)(s+1) Z L,

146

Pumpina Lemma property is necessary
for a language to re regular

H is noOt sufficient

148

Example of a non-regular language
with the pumping lemma property

L= {c"a"b" |m>1&n>0}U{a™b" | m,n> 0}

satisfies the pumping lemma property with £ = 1.

[For any w € L of length > 1, can take uy = ¢, v = first letter of w,
up = rest of w.]

But L is not regular — see Exercise 5.1.

149

The way shead, in THEOR.Y

» What does is mean £or a function
t0O Be computarle?
[|2 Computation Theory 1

» Are some computational tasks
intrinsiclaly unfeasigle?
[Iz ComplexityTheory]

» How do we specidy and reason
arout pProaram eehaviour?
[I Loaic and Prooé$,
B Semanttics of Pls]

151

L is not recular: (sketch)

I# L is recular there is a DFA M with L = L(M).
Let’s Build 8 new machine, M’ from it.

Take 3 ¢ transition from the start state of M.
Make the state you reach the start state of
M’

Delete all transitions involving ¢ (and remove ¢
£rom the alpharet). But dont remove any
states and keep the same accept states.

What lanauaae does M’ recoanise?

150

The way ahead, in FORMAL LANGUAGE.

» Are there other useful lancuace
classes?

» Are there other useful automata
classes that have a correspondence
to them?

» What i we ask the same Questions
apout them that we asked arout
reaular languages?

152

