Euclid's infinitude of primes

Theorem 80 The set of primes is infinite.

PROOF: Suppose The get of prints is finite, and let P1, P2, ---, PN be ell The primes. Consider 9 = (p1. p2. pN) +1 Since 9 is not in the list of primes Then There is some prime, say pi, such that pilg Also pil (p1--- pN). So pil [g-(p1-PN)]=1.

which a a contradiction.

Sets

Objectives

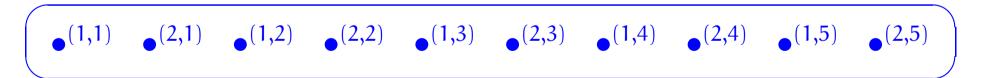
To introduce the basics of the theory of sets and some of its uses.

Abstract sets

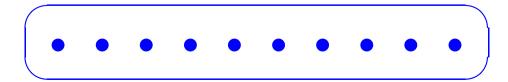
It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

$$(1,1)$$
 $(1,2)$ $(1,3)$ $(1,4)$ $(1,5)$ $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$ $(2,5)$

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as



or even simply as



for other considerations.

Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be *naively* looking at ubiquituous structures that are available within it.

The most inportant structure of a set is its member ship relation (\in) .

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$\forall$$
 sets $A, B. A = B \iff (\forall x. x \in A \iff x \in B)$.

 \Rightarrow Recall the instation $\{a_1, a_2, \dots, a_n\}$ is The Example:

Set whose elements are precisely. The a_i 's.

 $\{0\} \neq \{0,1\} = \{1,0\} \neq \{2\} = \{2,2\}$

Subsets and supersets

We say that A 5 2 subset of B, dusted ASB, whenever

 $\forall x. x \in A \Rightarrow x \in B.$

Also 3 is a superset JA.

Lemma 83

1. Reflexivity.

For all sets A, $A \subseteq A$.

2. Transitivity.

For all sets A, B, C, $(A \subseteq B \land B \subseteq C) \implies A \subseteq C$.

(3.) Antisymmetry.

For all sets A, B, $(A \subseteq B \land B \subseteq A) \implies A = B$.

on expression of the extensionality assisting.

Separation principle

For any set A and any definable property P, there is a set containing precisely those elements of A for which the property P holds.

by oly
$$\Leftrightarrow$$
 $\{x \in A \mid P(x)\} \subseteq A$

$$(a \in A \land P(a))$$

Russell's paradox

$$R = \{x \mid x \notin x\}$$

allowing. unbounded. conprehension

By and HX. XtRE> X # X
By univ. instartion

REREDRAR

Giving mansistercy!

defined by

$$\forall x. x \notin \emptyset$$

or, equivalently, by

$$\neg(\exists x. x \in \emptyset)$$

Cardinality

The *cardinality* of a set specifies its size. If this is a natural number, then the set is said to be *finite*.

Typical notations for the cardinality of a set S are #S or |S|.

Example:

$$\#\emptyset = 0$$

Powerset axiom

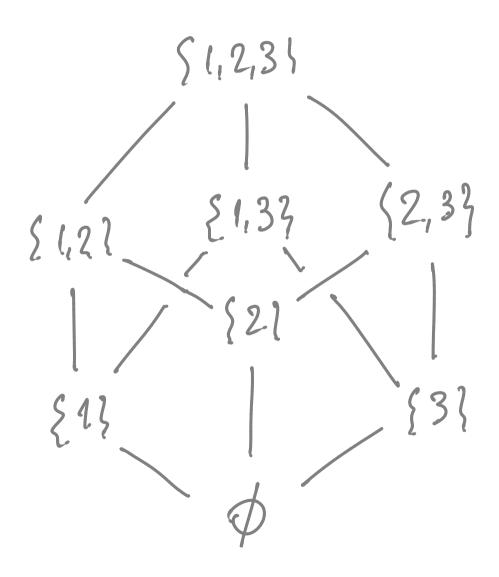
For any set, there is a set consisting of all its subsets.

$$\mathcal{P}(\mathbf{U})$$

$$\forall X. X \in \mathcal{P}(U) \iff X \subseteq U$$
.

Hasse diagrams for PW

U={1,2,3}



Proposition 84 For all finite sets U,

$$\# \mathcal{P}(U) = 2^{\#U}$$
.

PROOF IDEA: Let N be a set in Th n elements, say u_1, u_2, \dots, u_n . We need to count all the subsite of N.

Eg. $\sum_{i=0}^{n} \binom{n}{i} = \sum_{i=0}^{n} \binom{n}{i} 1^{n-i} 1^i = (1+1)^n = 2^n$.

Every subset SEU can be encoded es a segnence of 0's and 1's of length n mth Din position i d'ui & S and 1 Thm. Eg. S= { u, u3, u4, un3 1 0 1 1 0 --- 0 --- 1 1 2 3 4 5 --- n So #-P(U) = The mber of seguences of 0's and 1's of length on, which is 2h.