Conjunction

Conjunctive statements are of the form

P and Q

or, in other words,

both P and also Q hold

or, in symbols,

 $P \wedge Q$

or

P & Q

The proof strategy for conjunction:

To prove a goal of the form

 $P \wedge Q$

first prove P and subsequently prove Q (or vice versa).

Proof pattern:

In order to prove

 $P \wedge Q$

- 1. Write: Firstly, we prove P. and provide a proof of P.
- 2. Write: Secondly, we prove Q. and provide a proof of Q.

Scratch work:

Before using the strategy

Assumptions

Goal

 $P \wedge Q$

i

After using the strategy

Assumptions

Goal

Assumptions

Goal

P

•

When They are assurptions
Assurption

Pro

The use of conjunctions:

P, Q

To use an assumption of the form $P \wedge Q$, treat it as two separate assumptions: P and Q.

Theorem 20 For every integer n, we have that $6 \mid n$ iff $2 \mid n$ and $3 \mid n$.

PROOF: $\forall int n. 6 ln \Leftrightarrow (2 ln \wedge 3 ln)$ Let n be an arbitrary intiger. RTP: 6 | n => (21n 13 | n) (=>) Assume 61n(=>) n=6.k for cuint.k RTP: 2 In 1 3 In RTP: 2 ln

n=2i for an int.i

n=3jforajint.

By assuption n = 6k = 2(3k)and since 3k is an

integer as so is kwe are done.

n=3(2k)and 2k $\overline{n}t$.

gives n=3j from $\overline{n}t$.

(€) (2|n ∧ 3|n) ⇒ 6|n

Assume (2|n ∧ 3|n)

We have That 2|n ⇔ n=2i from inti

and that 3|n ⇔ n=3j for an inty

RTP: n=6.k for an int k.

n=37 n=2i $n^2 = 2i \cdot 3j =$ $n \equiv 0 \pmod{2}$ N=0 (md 3) N = 2in = 3j3 n = 6i 2n = 6jn = 3n - 2n = 6i - 6j = 6(i-j)found & Witness for division hits

What about ? $(2|n \wedge 3|n \wedge 5|n) \rightleftharpoons 30|n ?$ $(a_1|n \wedge a_2|n \wedge \dots \wedge a_e|n) \rightleftharpoons (a_i \cdot a_2 \cdot \dots \cdot a_e)|n ?$

Existential quantification

Existential statements are of the form

there exists an individual x in the universe of discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the property P(x) holds

 $\exists x. P(x)$

or, in symbols,

Cf.
$$f_n x \Rightarrow x+1$$
 $f_n v \Rightarrow v+1$

Y pos. Int n

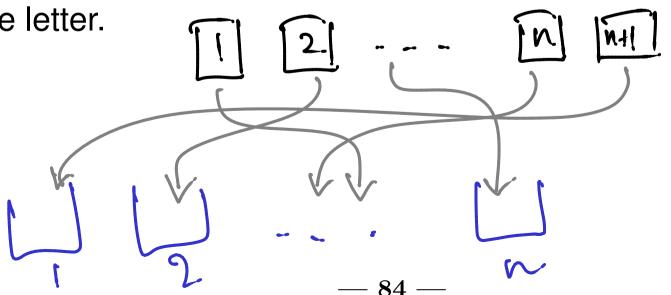
nH bellers are put
in n pigeonholes, ⇒

say 1, 2, ..., n

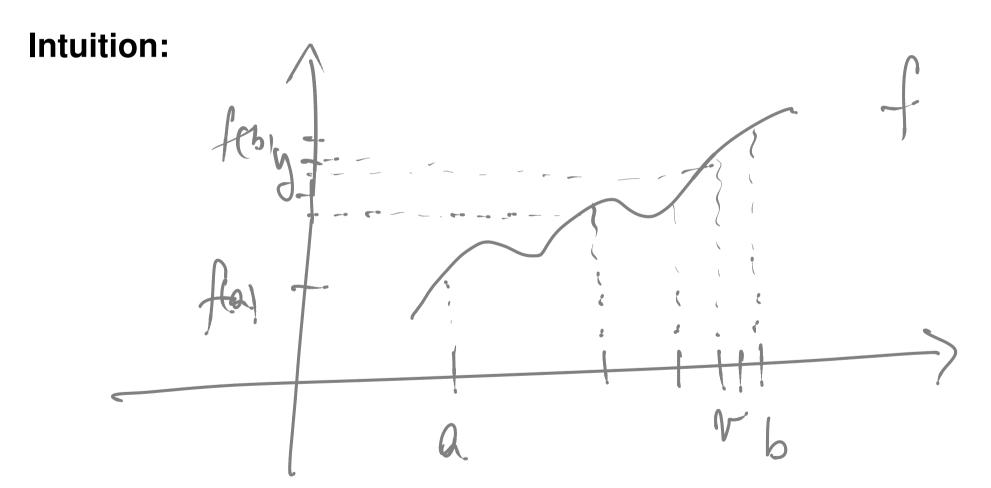
i has now than
one better.

Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.



Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval [a, b]. For every y in between f(a) and f(b), there exists v in between a and b such that f(v) = y.



The main proof strategy for existential statements:

To prove a goal of the form

$$\exists x. P(x)$$

find a *witness* for the existential statement; that is, a value of x, say w, for which you think P(x) will be true, and show that indeed P(w), i.e. the predicate P(x) instantiated with the value w, holds.

Definition

Proof pattern:

In order to prove

$$\exists x. P(x)$$

- 1. Write: Let $w = \dots$ (the witness you decided on).
- 2. Provide a proof of P(w).

Scratch work:

Before using the strategy

Assumptions

Goal

 $\exists x. P(x)$

•

After using the strategy

Assumptions

Goals

P(w)

definition: $w = \dots$ (the witness you decided on)

Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k = i^2 - j^2$.

PROOF: Hpo. int R. Justi. Fratj. 4k=i2-j2. Let k be an arbitrary pos. Int. RTP: Frat J. Fratj. 4k=i2-j2 Consider matress w=-. Consider withus V= --We sheck 4k= W2- r2.

12 - 12 $2^2 - 0^2$ $3^2 - 1^2$ idea/nhuition MRITE IT NRELY!

Assurptions

Ex. P(x)

P(x0)

The use of existential statements:

To use an assumption of the form $\exists x. P(x)$, introduce a new variable x_0 into the proof to stand for some individual for which the property P(x) holds. This means that you can now assume $P(x_0)$ true.

Theorem 24 For all integers l, m, n, if $l \mid m$ and $m \mid n$ then $l \mid n$.

PROOF: Wat l, m,n. $(l|m \times m|n) \Rightarrow l|n$ Assure l, m, n are arkidrany integers. Assure llm => (Fint. i. m=i.l) and min = j.m.) RTP: Fint. R. n=k.l Letw = ... Check n=W.l.

By assuption ne hare Fint. m=i.l So let is be such That mais. e By assuptish ne hare Djut. n=j.m So let jo be such That | n=Jo-m Therefore $n = jo \cdot m = (jo \cdot io) \cdot \ell$ For intress $w = jo \cdot io$ we have $n \cdot w = \ell$