
63

5. Feature spaces

Goals. Refresh your memory of IA Maths for NST, where you were taught
about linear spaces, bases, inner products, and projections. Understand the
link between linear regression and inner products. Get experience of feature
engineering.

In data science, a feature is any measurable property of the objects being studied. A linear
model is a model with unknown parameters in which the parameters are weighted by features
and combined linearly. Here’s a very simple example.

The Iris dataset was collected by the botanist Edgar Anderson and popularized32 by Ronald
Fisher in 1936. Fisher has been described as a “genius who almost single-handedly created the
foundations for modern statistical science”. The dataset consists of 50 samples from each of three
species of iris, each with four measurements.

Petal length Petal width Sepal length Sepal width species
1.0 0.2 4.6 3.6 setosa
5.0 1.9 6.3 2.5 virginica
5.8 1.6 7.2 3.0 virginica
1.7 0.5 5.1 3.3 setosa
4.2 1.2 5.7 3.0 versicolor
...

Suppose we’re interested in how petal length depends on sepal length. Here is a plot:

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal.Length

0

1

2

3

4

5

6

7

Pe
ta

l.L
en

gt
h

setosa
versicolor
virginica

The plot also shows a smooth curve for the fitted model

Petal.Length ≈ α+ β Sepal.Length+ γ (Sepal.Length)2. (23)

By fitted model we mean that the parameters α, β and γ have been chosen so as to make the
approximation as good as possible. What does this mean? In Section 5.4 we will see how to
formulate models like (23) probabilistically. This will let us be precise about what the best
fit is (namely, the maximum likelihood fit), and it will also let us do inference (e.g. report
confidence intervals for the parameters.) But for now here is the code:

1 # columns from the d a t a s e t
2 x , y = data [’Sepal .Length ’] , data [’Petal . Length ’]
3 # F i t the model : t ake s a f e a t u r e matr ix , and a c o l . v e c t o r o f outcomes
4 model = sklearn . linear_model . LinearRegression ()

32It’s tempting for computer scientists and mathematicians to think that data science is about algorithms
and calculating with distributions and so on, but shared datasets are arguably more important. C.P. Scott,
the former editor of The Guardian, said “Comment is free, but facts are sacred”.

Modern advances in neural networks and deep learning were propelled by two shared datasets: the MNIST
database of handwritten digits, and the ImageNet database of labelled photos. The story of ImageNet
and of Fei-Fei Li, the researcher who collected it, is told in The data that transformed AI research—
and possibly the world, https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-
and-possibly-the-world/.

In addition to shared datasets, it’s also useful to have a shared challenge, what David Donoho calls a
common task framework. See David Donoho. 50 years of Data Science. Presentation at the Tukey centennial
workshop. 2015. url: http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

64

5 model . f i t (np.column_stack([x , x**2]) , y [: , np. newaxis])
6 # p l o t a curve to d e p i c t the f i t t e d v a l u e s from the model
7 newx = np. linspace (4.2 , 8.2 , 200)
8 plt . plot (newx, model . predict (np. column_stack([newx, newx**2])))

In this model, we would say there are two features, Sepal.Length and (Sepal.Length)2. The
dataset has other attributes, and they can be transformed to create an infinite variety of
features, but we only use the word feature for data attributes that are being used in a model.
We call Petal.Length the outcome or label of this model, not a feature.

Why two features, and not one or three? From the perspective of the person preparing
the dataset, there is only one feature, Sepal.Length. From the perspective of the person
invoking model.fit(), there are two data features that have to be passed in, and it’s irrelevant
that they came from the same column in the dataset. From the perspective of the person
who implements model.fit(), there is a third feature, the constant feature that is being used
as a weight for the α parameter. (The model.fit() command automatically adds this feature
for you, unless you tell it not to by model.fit(..., fit_intercept=False).) Don’t get uptight
about defining the word ‘feature’, just write out your models explicitly, and there will be no
confusion.

* * *

The model is linear because it combines the unknown parameters α, β and γ in a linear
formula. There’s no reason to think this is in any way a ‘true’ model, and we could equally
well have proposed a non-linear model e.g.

Petal.Length ≈ α− βe−γSepal.Length.

Linear models are especially convenient to work with. They lend themselves to efficient
algorithms; linear models strained the computing capabilities of a desktop PC in the late
1980s, and non-linear models in the form of neural networks strain the computing capabilities
of clusters of GPUs in server farms today.

Linear models are also an easy way to explore aspects of the dataset, and they are
the building block for many other models, some of which you will study in Part II Machine
Learning and Bayesian Inference: support vector machines, perceptrons, and deep neural
networks.

The intuition behind linear modelling comes from the mathematics of linear spaces.
We’ll revise this maths first, before returning to linear modelling.

5.1 Linear mathematics 65

5.1. Linear mathemaƟcs
This picture illustrates all the concepts from vector spaces and linear mathematics that we’ll
need for this data science course:

• Linearly independent basis vectors e1 and e2
• The linear subspace spanned by those vectors, S =

{
λ1e1+λ2e2 : −∞ < λ1, λ2 < ∞

}
• Another vector x can be projected onto the subspace, by finding the point x̃ = λ̂1e1 +

λ̂2e2 in S that is closest to x

• The residual x− x̃ is orthogonal to the basis vectors

We’ll now define some these concepts abstractly and mathematically (leaving projections to
Section 5.4). It’s good to get intuition from three dimensional Euclidean space—but it’s
also useful to have abstract definitions so that the concepts can be applied to more general
settings, as you will see in Part II Digital Signal Processing and Computer Vision (Fourier
transforms and wavelets) and Quantum Computing.

5.1.1. ABSTRACT DEFINITIONS

• Let V be a set whose elements are called vectors, denoted by Roman letters u, v, w,
etc.

• Let F be a field whose elements are called scalars, denoted by Greek letters λ, µ, etc.
For our purposes, take F to be either the real numbers or the complex numbers.

• Let there be a binary operation V × V → V , called addition, written v + w.
• Let there be a binary operation F × V → V , called scalar multiplication, written λv.
• Let there be a binary operation V × V → F , called inner product, written v · w.

Vector space. V is called a vector space over F if the following properties hold: In introductory
geometry it’s
common to use bold
symbols for vectors,
e.g. v + 0 = v and
1v = v. This
notation makes it
clear that 0 is a
vector and 1 is a
scalar. The bold
notation is less
common in more
advanced
applications, so you
have to rely on type
inference to spot
that 0 is a vector
and 1 is a scalar.

1. Associativity: (u+ v) + w = u+ (v + w) for all vectors u, v, w.
2. Commutativity: u+ v = v + u for all vectors u, v
3. Zero vector: there is a vector 0 such that v + 0 = v for all vectors v
4. Inverse: for every vector v there is a vector denoted −v such that v + (−v) = 0

5. λ(v + w) = λv + λw for every scalar λ and vectors v, w
6. (λ+ µ)v = λv + µv and (λµ)v = λ(µv) for all scalars λ, µ and vector v
7. 1v = v for every vector v, where 1 is the unit scalar (i.e. 1λ = λ for every scalar λ).

Linear combinaƟons and bases. Let v1, . . . , vn be vectors in a vector space and λ1, . . . , λn be
scalars. Then the vector λ1v1 + · · ·+ λnvn is called a linear combination of v1, . . . , vn. The
set of all linear combinations

S =
{
λ1v1 + · · ·+ λnvn : λi ∈ F for all i

}
is called the span of {v1, . . . , vn}, and the vectors vi are said to span S. Clearly S ⊆ V , and
it is not hard to check that S is also a vector space. It is called a subspace of V .

66 5.1 Linear mathematics

Vectors v1, . . . , vn in a vector space are said to be linearly independent if

λ1v1 + · · ·+ λnvn = 0 =⇒ λ1 = · · · = λn = 0.

If this is not the case, then they are said to be linearly dependent.
If there is a finite set of vectors e1, . . . , en that span a vector space V , and they are

linearly independent, then they are called a basis for V . It can be shown that any two
bases for a vector space must have the same number of elements; this number is called the
dimension of the vector space.

Given a basis {e1, . . . , en} of a vector space, it can be proved that any vector x can be
uniquely written as

x = λ1e1 + · · ·+ λnen for some scalars λ1, . . . , λn.

The n-tuple (λ1, . . . , λn) is called the coordinates of x with respect to the given basis. If we
pick a different basis we’ll get different coordinates, but of course the vector x itself is still
the same regardless of the basis.

Inner products and orthogonality. Consider a vector space V over the field of real numbers. It
is said to be an inner product space if the inner product satisfies these properties:

8. v · v ≥ 0 for all vectors v, and v · v = 0 if and only if v = 0

9. (λu+ µv) · w = λ(u · w) + µ(v · w) for all vectors u, v, w and scalars λ, µ
10. v · w = w · v for all vectors v and w

An inner product space over the field of complex numbers is defined similarly, except that
condition 10 is replaced by v · w = w · v where λ is the complex conjugate of the complex
number λ. Also, the first part of condition 8 should be interpreted as Im(v · v) = 0 and
Re(v · v) ≥ 0.

Two vectors v and w in an inner product space are said to be orthogonal if v · w = 0.
A set of vectors (which may be finite or infinite) is said to be an orthogonal system if none
of them is equal to 0 and in addition every pair of vectors in the set is orthogonal.

The Euclidean norm for an inner product space is

∥v∥ =
√
v · v.

A vector v with ∥v∥ = 1 is called a unit vector. An orthogonal system is said to be an
orthonormal system if every vector in it is a unit vector.

5.1.2. USEFUL PROPERTIES

Here are some useful properties that can be proved from the abstract definitions.

11. 0v = 0, for every vector v in a vector space.
12. (−λ)v = −(λv), for every vector v in a vector space and every scalar λ.
13. (λv) · w = λ(v · w), for all scalars λ and vectors v, w in an inner product space.
14. 0 · v = 0, for every vector v in an inner product space.
15. For all n and all scalars λ1, . . . , λn and vectors v1, . . . , vn, w in an inner product space,(n∑

i=1

λivi

)
· w =

n∑
i=1

λi(vi · w).

16. If {e1, . . . , en} is an orthonormal system in an inner product space, then for every vector
x in the span of {e1, . . . , en}, the coordinates of x are given by

x =

n∑
i=1

(x · ei) ei.

17. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all vectors u, v; this is known as the triangle inequality.

These properties are mostly obvious when we’re working with finite dimensional Eu-
clidean space. For abstract vector spaces, they must be proved directly from the defining
properties 1–10. The proofs are dull definition-pushing, but it’s reassuring to know that it
can be done. Here are some examples.

5.1 Linear mathematics 67

Exercise (Prove useful property 11). In this equation, the left hand side must be referring to the
scalar 0 ∈ F and the right hand side to the vector 0 ∈ V , where V is the vector space over
field F , because otherwise the equation doesn’t make sense—the abstract definitions don’t
define multiplication of vectors, and scalar multiplication yields a vector.

In both the real numbers and the complex numbers (and indeed in any field F), 0 = 0+0.
So, by property 6,

0v = (0 + 0)v = 0v + 0v.

By property 4, there is some vector −(0v) such that 0v +
(
−(0v)

)
= 0. Adding this to each

side of the equation,
0v +

(
−(0v)

)
=
(
0v + 0v

)
+
(
−(0v)

)
and so, using property 1,

0 = 0v +
(
0v + (−(0v))

)
= 0v + 0.

Finally, by property 3,
0 = 0v.

Exercise (Prove useful property 12). Property 6 says that

λv + (−λ)v =
(
λ+ (−λ)

)
v.

In both the real numbers and the complex numbers (and indeed in any field F), λ+ (−λ) =
0 ∈ F , thus

λv + (−λ)v = 0v

which we showed in the previous exercise to be equal to 0 ∈ V . So (−λ)v satisfies property 4
and it is therefore −(λv).

Exercise (Prove useful property 13).

(λv) · w =
(
(λ+ 0)v

)
· w since λ = λ+ 0 ∈ F

= (λv + 0v) · w by property 6
= λ(v · w) + 0(v · w) by property 9
= λ(v · w) since 0µ = 0 ∈ F.

5.1.3. ADVANCED APPLICATION: FOURIER ANALYSIS

In this course on data science, the only vector space we’re interested in is a simple finite-
dimensional Euclidean space over the real numbers. Section 5.2 will go into detail. But first,
to illustrate that there’s some merit in defining vector spaces abstractly, here’s an advanced
application, a step on the way to Fourier analysis.

Inner product space. Let V consist of all continuous complex-valued functions on the interval
[−π, π]. Define addition of functions in the obvious way, define multiplication by a complex
number in the obvious way, and define the inner product to be

f · g =
1

π

∫ π

−π

f(τ)g(τ) dτ.

It is easy to check that properties 1–7 are satisfied, i.e. that this is a vector space over the
field of complex numbers. Using some standard results about integration one can also show
that properties 8–10 are also satisfied, therefore this is an inner product space. (A typical
result: if f is a continuous function, then it is integrable over a finite interval.)

Orthonormal system. Every vector in V is a continuous function. Consider the vectors

{e1, e2, . . . } =

{
1√
2
, cos(τ), sin(τ), cos(2τ), sin(2τ), cos(3τ), . . .

}
.

(The first element 1/
√
2 is a way of writing the constant function f(τ) = 1/

√
2.) With some

A-level trigonometry and calculus, it can be shown that ei · ej = 0 if i ̸= j, and ei · ei = 1 for
every i, i.e. that this set is an orthonormal system.

68 5.1 Linear mathematics

Fourier coefficients. It can be shown that any function f ∈ V can be written in coordinates
of the orthonormal system as

f =
∞∑
i=1

(f · ei) ei

or equivalently

f(τ) =
a0
2

+
∞∑
i=1

(
an cos(nτ) + bn sin(nτ)

)
where

a0 =
1

π

∫ π

−π

f(τ) dτ,

ai =
1

π

∫ π

−π

f(τ) cos(iτ) dτ for i ≥ 1

bi =
1

π

∫ π

−π

f(τ) sin(iτ) dτ for i ≥ 1.

This goes beyond Useful Property 16: that property only applies to finite orthonormal sys-
tems, whereas here we have an infinite orthonormal system. In Part II Computer Vision you
will see how the theory of inner product spaces is extended from finite to infinite bases.

5.2 Features in data 69

5.2. Features in data

Key idea. A numerical feature can be seen as a vector, with one real number
per object in the dataset. The vector space is over the field of real numbers.
When we write a linear model like equation (23) on page 63, it should be
interpreted as a linear combination of feature vectors.
Feature vectors are a fundamental concept in machine learning. You will see
them again in Part II Machine Learning and Bayesian Inference, Natural
Language Processing, Information Retrieval, and anything at all to do with
neural networks.

Let’s illustrate with a dataset.

The UK Met Office makes available historic data33 from 37 stations around the UK. Each station
has monthly records for mean daily maximum temperature tmax, mean daily minimum tempera-
ture tmin, days of air frost af, total rainfall rain, and total sunshine duration sun. Coverage varies;
the longest records are from Oxford and from Armagh, going back to 1853.

month tmax tmin af rain sun station lat lng alt_m
1963 Sep 14.7 5.9 0 126.4 127.7 Eskdalemuir 55.311 -3.206 242
1955 Aug – – – 35.1 194.7 Shawbury 52.794 -2.663 72
1937 May 15.3 8.4 0 59.8 184.8 Lowestoft 52.483 1.727 18
2007 Aug 20.6 11.8 0 40.3 204.6 Waddington 53.175 -0.522 68
1925 July 21.8 12.6 0 23.2 – Sheffield 53.381 -1.490 131

...

Here are two stations, Cambridge (measured at the National Institute of Agricultural Botany,
between Churchill and Girton colleges), and Braemar in the Scottish highlands. The plot
shows the mean temperature temp = (tmin+ tmax)/2 as a function of date.

1985 1990 1995 2000 2005 2010 2015 2020

0

10

20

m
ea

n
te

m
p Cambridge

Braemar

Are temperatures increasing? It’s tricky to read this directly off the plot, because of
the annual cycle and because of noise. A crude solution is to simply average over the 12
months of each year, and plot this average over time. This isn’t ideal, because averaging is
lossy i.e. we’d be throwing away data; and because a missing value for one month will cause
the entire year to be missing.

A cleverer solution is to use features to model the effects we’re trying to capture. There
are two effects, an annual cycle, and a (hypothetical) increasing trend, which we can describe
by the model

temp ≈ α+ β sin(2πt+ θ) + γt

where t is the date in years, and α, β, γ, and θ are unknown parameters. (The plot suggests
that α is different for different stations, and the other parameters might also be different, so
let’s concentrate on a single station for now.)

Linear models are much easier to fit than non-linear models. The model we’ve proposed
for tmean is linear in α and β and γ and not in θ—but there is a cunning trick from A-level
trigonometry that lets us rewrite it as a linear model. The trick is

sin(A+B) = sinA cosB + cosA sinB

and so our model can be rewritten

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γt.

33https://www.metoffice.gov.uk/public/weather/climate-historic

https://www.metoffice.gov.uk/public/weather/climate-historic

70 5.2 Features in data

This model has four feature vectors: the constant vector 1; the vector s whose ith element is
si = sin(2πti); the vector c whose ith element is ci = cos(2πti); and the vector t. These are
all n-dimensional vectors, where n is the number of rows in the dataset. There is also one
outcome vector tmean. Here is the fitted model for Cambridge:

1985 1990 1995 2000 2005 2010 2015 2020

0

10

20
Cambridge station

The parameters of the fitted model are α = −63.9℃, β1 = −1.07℃, β2 = −6.52℃, andWhy is α so
extreme? It is the
temperature in the
year 1 BC (there
was no year 0 AD),
based on linearly
extrapolating the
rate γ. It’s daft to
trust that the
model will predict
well for such a wild
extrapolation!

γ = 0.0372℃/year.

The model was fitted with similar sklearn.linear_model code to what we saw before:

1 # The data columns and f e a t u r e s we ’ l l use
2 t = data [’yyyy ’] + (data [’mm’]−1)/12
3 temp = (data [’tmin ’]+data [’tmax ’])/2
4 one , s , c = np. ones(len (df)) , np. sin(2*π*t) , np. cos(2*π*t)
5 # We ’ l l r e s t r i c t a t t e n t i o n to a sub se t o f rows
6 station = data [’ station ’]
7 i = np. logical_and(station == ’Cambridge ’ , t >= 1985)
8 # F i t a l i n e a r model (and t e l l i t not to add i t s own cons tan t ’1 ’ f e a t u r e)
9 model = sklearn . linear_model . LinearRegression(fit_intercept=False)
10 model . f i t (np.column_stack([one , s , c , t]) [i , :] , temp[i , np. newaxis])
11 print (model . coef_)

5.3 Orthogonal projection 71

5.3. Orthogonal projecƟon
Let’s return to the key picture that illustrates linear mathematics.

• Linearly independent basis vectors e1 and e2
• The linear subspace spanned by those vectors, S =

{
λ1e1+λ2e2 : −∞ < λ1, λ2 < ∞

}
• Another vector x can be projected onto the subspace, by finding the point x̃ = λ̂1e1 +

λ̂2e2 in S that is closest to x

• The residual x− x̃ is orthogonal to the basis vectors

In Section 5.1 we reviewed vector spaces and bases. We’ll now define projection in inner
product spaces.

The ProjecƟon Theorem. Let V be an inner product space, let {e1, . . . , en} be a finite collec-
tion of vectors, and let S be the subspace spanned by these vectors. Given a vector x ∈ V ,
there is a unique vector x̃ that is closest to x, i.e. that achieves Mathematicians

prefer to write inf
rather than min in
equations like this,
where the minimum
is being taken over
an infinite set and
it hasn’t yet been
established that the
minimum is
attained.

∥x− x̃∥ = min
x′∈S

∥x− x′∥.

Furthermore, x− x̃ is orthogonal to S, i.e.

(x− x̃) · y = 0 for all y ∈ S.

The element x̃ is called the orthogonal projection of x onto S, and x− x̃ is called the residual.
Let’s illustrate this theorem in three-dimensional Euclidean space. Let e1 = [1, 1, 0],

let e2 = [1, 0,−1], and let x = [1, 2, 3].

FINDING THE CLOSEST POINT

What is the closest point to x in the span of {e1, e2}? Just write out the optimization problem
we want to solve:

min
λ1,λ2

∥∥x− (λ1e1 + λ2e2)
∥∥.

We can compute the solution directly:

1 e1 ,e2 ,x = np. array ([1 ,1 ,0]) , np. array ([1 ,0 ,−1]) , np. array ([1 ,2 ,3])
2 λ1 ,λ2 = scipy . optimize . fmin(lambda λ : np. l ina lg .norm(x−λ[0]*e1−λ[1]*e2) , [0 ,0])
3 λ1*e1 + λ2*e2 # outputs : a r r a y ([0 .33332018 , 2 .66666169 , 2 .33334151])

Or we can try algebra. Expanding the definition of ∥·∥, we want to minimize

x·x− 2
(
λ1 x·e1 + λ2 x·e2

)
+
(
λ2
1 e1 ·e1 + 2λ1λ2 e1 ·e2 + λ2

2 e2 ·e2
)
.

Differentiating with respect to λ1 and λ2 and setting the derivatives equal to 0,
∂

∂λ1
= 0 : − 2x·e1 + 2λ1 e1 ·e1 + 2λ2 e1 ·e2 = 0

∂

∂λ2
= 0 : − 2x·e2 + 2λ1 e1 ·e2 + 2λ2 e2 ·e2 = 0

(24)

or equivalently

λ1 e1 ·e1 + λ2 e1 ·e2 = x·e1
λ1 e1 ·e2 + λ2 e2 ·e2 = x·e2.

We can compute the solution to these equations:

72 5.3 Orthogonal projection

1 λ1 ,λ2 = np. l ina lg . solve ([[e1 @ e1 , e1 @ e2] , [e1 @ e2 , e2 @ e2]] ,
2 [x @ e1 , x @ e2])
3 λ1*e1 + λ2*e2 # outputs : a r r a y ([0 .33333333 , 2 .66666667 , 2 .33333333])

Or, for geometrical insight, we can rearrange equations (24) to get(
x− (λ1e1 + λ2e2)

)
· e1 = 0(

x− (λ1e1 + λ2e2)
)
· e2 = 0

In other words, the residual is orthogonal to e1 and to e2, and hence it’s orthogonal to every
linear combination of e1 and e2.

EXPLICIT PROJECTION VIA AN ORTHONORMAL BASIS

Another way to find x̃ is by creating an orthonormal basis out of {e1, e2} and then applying
Useful Property 16 on page 66 to get the coordinates of x̃. Let’s create an orthonormal basis
first. Start by setting f1 to be a unit vector in the same direction as e1:

f1 =
e1
∥e1∥

.

Next, construct f2 by subtracting the part that’s parallel to f1:

f ′
2 = e2 − (e2 ·f1)f1, f2 =

f ′
2

∥f ′
2∥

.

This construction ensures that f ′
2 · f1 = 0 therefore f2 · f1 = 0, and it also ensures that both

f1 and f2 are unit vectors. We’ve written f1 and f2 as linear combinations of e1 and e2, and
it’s easy to check that e1 and e2 can be written as linear combinations of f1 and f2, thus
span{e1, e2} = span{f1, f2} = S.

Useful Property 16 now tells us exactly what the coordinates are for x̃:

x̃ = (x̃·f1)f1 + (x̃·f2)f2.

Furthermore, the Projection Theorem tells us that the residual is orthogonal to S = span{f1, f2},
which means (x− x̃) · f1 = (x− x̃) · f2 = 0, thus

x̃ = (x·f1)f1 + (x·f2)f2.

In numpy,

1 f1 = e1 / np. l ina lg .norm(e1)
2 f ′2 = e2 − (e2 @ f1) * f1
3 f2 = f ′2 / np. l ina lg .norm(f ′2)
4 (x@f1)* f1 + (x@f2)* f2 # outputs : a r r a y ([0 .33333333 , 2.66666667 , 2 .33333333])

COLINEARITY

In this example, we projected onto linearly independent basis vectors e1 and e2. What
happens if we want to project onto a collection of linearly dependent vectors, e.g. if e2 = αe1?

The Projection Theorem doesn’t assume linear independence, so the overall result still
holds: there is still a unique projection x̃. The explicit projection method would still work,
but it would give f ′

2 = 0, so we’d just discard that vector from the orthonormal basis.
Equations (24) would still be correct, but they would have multiple solutions for λ1 and λ2.

In other words, we can always project x onto a subspace S = span({e1, . . . , en}), but
we can only identify the ‘contribution’ of each of the ei if the ei are linearly independent.

5.4 Linear regression and least squares 73

5.4. Linear regression and least squares

Key idea. Suppose we want to fit a linear model to a dataset. If we model the
outcome as a normal random variable, then maximum likelihood estimation
of the unknown parameters is exactly the same as an orthogonal projection
of the outcome vector onto feature vectors.

In the Iris dataset on page 63, we investigated how petal length depends on sepal length, and
we proposed the model

Petal.Length ≈ α+ β Sepal.Length+ γ (Sepal.Length)2.

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal.Length

0

1

2

3

4

5

6

7

Pe
ta

l.L
en

gt
h

setosa
versicolor
virginica

Let’s be explicit and propose a full probabilistic model:

Petal.Lengthi ∼ Normal
(
α+ β Sepal.Lengthi + γ (Sepal.Lengthi)2, σ2

)
(25)

where i ∈ {1, . . . , n} indexes the rows of the dataset, and each Petal.Lengthi is an independent
random variable, and Sepal.Lengthi is being treated as a non-random value.

We can estimate parameters in the usual way, by maximizing the likelihood of the
observed values. For brevity, let yi = Petal.Lengthi, let ei = Sepal.Lengthi, and let fi =
(Sepal.Lengthi)2. Then the density function for a single observation is

f(yi) =
1√
2πσ2

e−
(
yi−(α+βei+γfi)

)2/
2σ2

and the log likelihood is

log lik(α, β, γ, σ | y) = −n

2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(
yi − (α+ βei + γfi)

)2
.

We can maximize the log likelihood in two steps. The first step is to maximize the last term,
i.e. find α̂, β̂, and γ̂ that solve

min
α,β,γ

∥∥y − (α1 + βe+ γf)
∥∥2.

In this equation we have switched to vector notation, and 1 means the vector [1, 1, . . . , 1].
This is nothing other than finding the orthogonal projection of the outcome vector y onto
the space spanned by the feature vectors {1, e, f}. Another name for this procedure is the
method of least squares, invented by Gauss.

The second step is to find σ to maximize what’s left, i.e. to solve

min
σ>0

{
n

2
log
(
2πσ2

)
+

1

2σ2

∥∥y − (α̂1 + β̂e+ γ̂f)
∥∥2}.

This is a trivial one-parameter optimization problem, once we know α̂, β̂, and γ̂.

CONFOUNDED FEATURES

The Projection Theorem says that there is a unique projection ỹ of y onto the features
{1, e, f}. However, if the feature vectors were linearly dependent, then there would not be a
unique solution for (α, β, γ), and we’d say that the features are confounded.

In the context of abstract vector spaces, the word is colinearity; see Section 5.3. Some-
times, geometrical intuition about colinearity can help us debug what’s going wrong with a
probabilistic model fit.

Example sheet 3b asks you to look at examples of confounding.

74 5.4 Linear regression and least squares

INFERENCE

An explicit probabilistic model like equation (25) lets us make inferences, using the techniques
from Section 3 and Example Sheet 2.

• We can use Bayesian reasoning: invent prior distributions for the unknown parameters,
and calculate their posterior distributions.

• We can use frequentist reasoning: compute confidence intervals for the unknown pa-
rameters, using bootstrap resampling. Resampling means generating synthetic datasets
based on the data we actually saw; the natural resampling method here is to compute
the maximum likelihood estimates for the parameters, and then to plug these estimates
into the model (25) and generate new random variables. This is known as parametric
resampling.

• We can conduct hypothesis tests, along the lines of example sheet 2 question 3.

Example sheet 3b asks you to look at all these types of inference.

5.5 Feature engineering 75

5.5. Feature engineering
In Section 5.2, we cleverly designed features to allow us to extract an underlying linear trend
from climate data, taking account of the annual cycle. In general, we design features for
several purposes:

• features to extract a particular summary from the data, e.g. the linear trend in the
climate data;

• features that correspond to a causal model for which we want to estimate parameters,
e.g. the transition probabilities for a Markov chain;

• ‘black box’ features that capture enough detail for us to be able to make good predic-
tions or extrapolations—we don’t have to understand such features, we just want them
to work well;

• features that turn arbitrary objects like tweets or sentence fragments into numbers that
can be put into quantitative models, e.g. distributional semantics which you will study
in Part II Natural Language Processing, and term frequency models for documents
which you will study in Part II Information Retrieval.

Example sheet 3b invites you to use features for one-hot coding of categorical data, and for
time series analysis.

* * *

The more features we add, the better the fit i.e. the smaller the residual we can achieve.
But models with too many features tend to be bad at generalizing to new data (see example
sheet 2 question 5). It’s an art to design sets of features that are expressive enough to
capture the meaningul variation in the data, while being parsimonious enough to generalize
well. Here are two strategies that are sometimes helpful. You will learn more about them in
futher courses on machine learning and data science.

Feature selecƟon. Start with a long list of possible features. Pick m, a number of features
to use, and find the best fitting model subject to the constraint that it’s only allowed to use
m of the possible features. This is called feature selection.

Dimension reducƟon. Start with a long list of possible features {e1, . . . , en}. Pick m, a
number of features to use, and construct a set of m vectors {f1, . . . , fm} that capture the
features as well as possible. For example, we might set m = 2 and pick {f1, f2} to minimize∑n

i=1∥ei − ẽi∥, where ẽi is the projection of vector ei onto the span of {f1, f2}. This would
be called a two-dimensional embedding of the features, and it is an example of dimension
reduction.

Gauss’ invention of the
Method of Least Squares

The method of least squares is the automobile of modern statistical analysis: despite its

limitations, occasional accidents, and incidental pollution, it and its numerous variations,

extensions, and related conveyances carry the bulk of statistical analyses, and are known and

valued by nearly all.

Stephen M. Stigler, Gauss and the invention of least squares, Annals of Statistics, 1981

Gauss gives an insightful and illuminating account of how the idea of the least-squares method

came to him. Up to that time, “… in every case in which it was necessary to deduce the orbits of

heavenly bodies from observations, there existed advantages not to be despised, suggesting, or at

any rate permitting, the application of special methods; of which advantages the chief one was,

that by means of hypothetical assumptions an approximate knowledge of some elements could

be obtained before the computation of the elliptic elements was commenced. Notwithstanding

this, it seems somewhat strange that the general problem – To determine the orbit of a heavenly

body, without any hypothetical assumption, from observations not embracing a great period of

time, and not allowing the selection with a view to the application of special methods, – was

almost wholly neglected up to the beginning of the present century; or at least, not treated by any

one in a manner worthy its importance; since it assuredly commended itself to mathematicians

by its difficulty and elegance, even if its great utility in practice were not apparent. An opinion

had universally prevailed that a complete determination from observations embracing a short

interval of time was impossible – an ill-founded opinion – for it is now clearly shown that the orbit

of a heavenly body may be determined quite nearly from good observations embracing only a few

days; and this without any hypothetical assumption.

“Some idea occurred to me in the month of September of the year 1801, engaged at the time on a

very different subject, which seemed to point to the solution of the great problem of which I have

spoken. Under such circumstances we not unfrequently, for fear of being too much led away by

an attractive investigation, suffer the associations of ideas, which more attentively considered,

might have proved most fruitful in results, to be lost from neglect. And the same fate might have

befallen these conceptions, had they not happily occurred at the most propitious moment for their

preservation and encouragement that could have been selected. For just about this time the

report of the new planet, discovered on the first day of January of that year with the telescope at

Palermo, was the subject of universal conversation; and soon afterwards the observations made

by the distinguished astronomer Piazzi from the above date to the eleventh of February were

published. Nowhere in the annals of astronomy do we meet with so great an opportunity, and a

greater one could hardly be imagined, for showing most strikingly, the value of this problem, than

in this crisis and urgent necessity, when all hope of discovering in the heavens this planetary

atom, among innumerable small stars after the lapse of nearly a year, rested solely upon a

sufficiently approximate knowledge of its orbit to be based upon these very few observations.

Could I ever have found a more seasonable opportunity to test the practical value of my

conceptions, than now in employing them for the determination of the orbit of the planet Ceres,

which during the forty-one days had described a geocentric arc of only three degrees, and after

the lapse of a year must be looked for in a region of the heavens very remote from that in which

it was last seen? This first application of the method was made in the month of October, 1801, and

the first clear night, when the planet was sought for (by de Zach, December 7, 1801) as directed

by the numbers deduced from it, restored the fugitive to observation. Three other new planets,

subsequently discovered, furnished new opportunities for examining and verifying the efficiency

and generality of the method.

“Several astronomers wished me to publish the methods employed in these calculations

immediately after the second discovery of Ceres; but many things – other occupations, the desire

of treating the subject more fully at some subsequent period, and, especially, the hope that a

further prosecution of this investigation would raise various parts of the solution to a greater

degree of generality, simplicity, and elegance, – prevented my complying at the time with these

friendly solicitations. I was not disappointed in this expectation, and I have no cause to regret the

delay. For the methods first employed have undergone so many and such great changes, that

scarcely any trace of resemblance remain between the method in which the orbit of Ceres was

first computed, and the form given in this work. Although it would be foreign to my purpose, to

narrate in detail all the steps by which these investigations have been gradually perfected, still, in

several instances, particularly when the problem was one of more importance than usual, I have

thought that the earlier methods ought not to be wholly suppressed. But in this work, besides the

solution of the principal problems, I have given many things which, during the long time I have

been engaged upon the motions of the heavenly bodies in conic sections, struck me as worthy of

attention, either on account of their analytical elegance, or more especially on account of their

practical utility.”

Quirino Paris, The dual of the least-squares method, 2014.

Quoting Gauss, Theoria motus corporum coelestium in sectionibus conicis solem

ambientum, 1809.

Translation by Davis, Theory of the motion of the heavenly bodies moving about the

sun in conic sections, 1857.

	What is data science?
	`Surprised by data': reasoning about uncertainty
	`Field of study': scientific modeling
	The foundations

	Probabilistic models
	Random samples
	Markov models
	Descriptive models
	Causal models
	Common random variables
	Independence and joint distributions

	Distributions of random variables
	Working with random variables
	Custom distributions
	Limit theorems
	Importance sampling
	The empirical distribution

	Inference
	Quantifying a question
	Bayesianism
	Frequentism
	Model selection
	Pragmatic inference

	Stochastic processes
	Markov chains
	Estimation in a hidden Markov model
	Limit theorems
	Stationary behaviour
	Detailed balance
	Ergodic theorem
	Limiting behaviour

	Feature spaces
	Linear mathematics
	Abstract definitions
	Useful properties
	Advanced application: Fourier analysis

	Features in data
	Orthogonal projection
	Linear regression and least squares
	Feature engineering

	Blank Page

