
51

4. StochasƟc processes

Be able to formulate models for stochastic processes, and understand how
they can be used for estimation and prediction. Be familiar with calculation
techniques for memoryless stochastic processes. Understand the classification
of discrete state space Markov chains, and be able to calculate the stationary
distribution, and recognise limit theorems.

Science is often concerned with the laws that describe how a system changes over time, such
as Newton’s laws of motion. When we use probabilistic laws to describe how the system
changes, the system is called a stochastic process. We used a stochastic process model in
Section 1.2 to analyse Bitcoin; the probabilistic part of our model was the randomness of
who generates the next Bitcoin block, be it the attacker or the rest of the peer-to-peer network.
In Part II, you will come across stochastic process models in several courses:

• in Computer Systems Modelling they are used to describe discrete event simulations of
communications networks

• in Machine Learning and Bayesian Inference they are used for computing posterior
distributions

• in Information Theory they are used to describe noisy communications channels, and
also the data streams sent over such channels.

4.1. Markov chains
Example 4.1. The Russian mathematician Andrei Markov (1856–1922) invented a new type
of probabilistic model, now given his name, and his first application was to model Pushkin’s
poem Eugeny Onegin. He suggested the following method for generating a stream of text
C = (C0, C1, C2, . . .) where each Cn is an alphabetic character:

As usual, we write
C for the random
variable and c for
an actual value.
Technically
speaking, C is a
function that
returns an infinite
sequence, and we
ought to define it as
a lazy list rather
than writing out a
non-terminating
while loop.

1 alphabet = [’a ’ , ’b ’ , . . .] # a l l p o s s i b l e c h a r a c t e r s i n c l . punc tua t i on
2 next_char_prob = {(’a ’ , ’a ’) : [0 ,0 , .1 , . . .] , (’a ’ , ’b ’) : [. 5 ,0 , . . .] }
3 c = [’o ’ , ’n ’] # a r b i t r a r y s t a r t i n g s t r i n g o f l e n g t h 2
4
5 while True :
6 p = next_char_prob [(text [−2], text [−1])] # the l a s t two e l ements
7 c .append(random. choice(alphabet , weights=p))

In this code, next_char_prob is a dictionary where each value p=next_char_prob[...] is a
vector of probabilities, and where p[i] is the probability that the next character is alphabet[i].

We can measure next_char_prob for a piece of literature by looking at all trigrams
i.e. sequences of three characters. Markov tabulated m-grams for several works by famous
Russian authors, and suggested that the next_char_prob table might be used to identify an
author.

Here is some Shakespeare generated in this method. The source is all of Shakespear’s
plays, with stage directions omitted, and converted to lowercase.

once. sen thery lost like kin ancry on; at froan, is ther page: good haves have
emst upp’d ne kining, whows th lostruck-ace. ’llycur wer; hat behit mord. misbur
greake, weave o’er, thousing i se to; ang shal spird

Here is some text generated with 5-grams rather than trigrams.

once is pleasurely. though the the with them with comes in hand. good. give and
she story tongue. what it light, would in him much, behold of busin! how of ever
to yearling with then, for he more riots annot know well.

DefiniƟon. A Markov chain is a sequence (X0, X1, X2, . . .) where each Xn is a discrete
random variable and

P(Xn+1 = xn+1 |X0 = x0, X1 = x1, . . . , Xn = xn) = P(Xn+1 = xn+1 |Xn = xn)

for all x0, . . . , xn+1. (15)

52 4.1 Markov chains

(To be precise, the equation must hold for all x0, . . . , xn+1 such that P(X0 = x0, . . . , Xn =
xn) > 0, since otherwise the conditional probability isn’t defined.) If equation (15) holds and
furthermore the probability does not depend on n, i.e. if there is some matrix P such that

P(Xn+1 = y |Xn = x) = Pxy

then the process is called a time-homogeneous Markov chain with transition matrix P .
In IA Foundations of Computer Science you learnt about finite automata. What is the

relationship to Markov chains?

• Finite automata and Markov chains both have a set of possible states, and a lookup
table / transition relation that describes progression from one state to the next.

• Finite automata are for describing algorithms that accept input, so the lookup table
specifies ‘what happens next, based on the current state and the given input symbol?’
Markov chains are for describing systems that evolve by themselves, without input.

• Non-deterministic finite automata allow there to be several transitions out of a state,
but they do not specify the probability of each transition, since they are intended to
model ‘what are all the things that might happen?’ Markov chains do specify the
transition probabilities, since they are intended to model ‘what are the things that
typically happen?’

• Markov chains are allowed to have an infinite state space, e.g. the space of all integers.
(They can even be defined with uncountable state spaces in which case Xn is a contin-
uous random variable; the definition needs to be modified to refer to transition density
functions rather than transition probabilities.)

The word chain means that the sequence (Xn)n≥0 is indexed by an integer n. There are
related definitions for continuous-time processes, and these will be used in Part II Computer
Systems Modelling, but we will not study them further in this course.

In the Shakespeare example, the next character was chosen based on the previous two
characters, which at first glance looks like it doesn’t satisfy equation (15). The trick is to
define X appropriately: in this case we should define Xn = (Cn, Cn+1). Then, the text
generation rule can be rewritten as

1 x = [(’o ’ , ’n ’)] # a r b i t r a r y v a l u e f o r x [0]
2 c = x [0]
3
4 while True :
5 lastx = x[−1]
6 nextchar = random. choice(alphabet , next_char_prob [lastx])
7 nextx = (lastx [−1], nextchar)
8 x .append(nextx)
9 c .append(nextchar)

This way of writing the code makes it clear that X is a time-homogeneous Markov chain.
The actual text C is a byproduct of X.

CALCULATIONS BASED ON MEMORYLESSNESS

Equation (15) says that if we know the present state Xn, then the past gives us no extra
information about what will happen next. This is known as memorylessness, or as the Markov
property. Most calculations with Markov chains revolve around conditioning on a previous
step and then applying memorylessness. Look back at Section 1.2 to see how we we used
memorylessness in our calculations for the Bitcoin example. Here are some more examples.

Example 4.2 (MulƟstep transiƟon probabiliƟes). The winter weather in Cambridge varies from
grey (g) to drizzle (d) to rain (r). Suppose that the weather changes from day to day
according to the Markov chain drawn below. If it is overcast today, what’s the chance that

4.1 Markov chains 53

it will be overcast three days from today?

r

d g

0.2

0.6
0.20.3

0.7

0.5
0.5

P =

r d g

r 0.2 0.6 0.2
d 0.3 0 0.7
g 0 0.5 0.5

The state transition diagram can also be written as a matrix P of transition probabilities.
When you write out a Markov transition diagram or matrix, double-check that every row
sums to 1, i.e. that all the total probability of all edges out of a node is equal to 1.

The question is asking us to calculate

P(X3 = g |X0 = g).

The most useful strategy for questions like this is: think of the causal diagram that underlies There are two quite
separate diagrams
involved here: the
state space diagram
which shows
transition
probabilities
between states; and
the causal diagram
which shows which
random variables
depend on which
other random
variables.

the model, and use the law of total probability to add in variables for all the missing nodes.
In the case of Markov chains, the fundamental causal process is ‘choose the next state based
on the current state’, which we could draw as

X0 → X1 → X2 → X3 → . . .

so let’s add in variables for the missing variables X1 and X2:

P(X3 = g |X0 = g) =
∑
x1, x2

P(X3 = g,X2 = x2, X1 = x1 |X0 = g).

The next most useful strategy is: think of the causal diagram that underlies the model, and
rewrite conditional probabilities so that they are of the form ‘probability of a variable for one
node in the causal diagram, given its preceding nodes’. So, let’s try to rewrite the probability This approach, of

drawing a causal
diagram and
rewriting
conditional
probabilities so they
respect the edges, is
the essence of
Bayes’ rule and
indeed of all of
Bayesian modelling.

we’re after in terms of P(X3 = g |X2 = x2) etc.

P(X3 = g,X2 = x2, X1 = x1 |X0 = g)

=
P(X3 = g,X2 = x2, X1 = x1, X0 = g)

P(X0 = g)
from defn. of conditional probability

=
P(X3 = g |X2 = x2, X1 = x1, X0 = g)P(X2 = x2, X1 = x1, X0 = g)

P(X0 = g)

=
P(X3 = g |X2 = x2)P(X2 = x2, X1 = x1, X0 = g)

P(X0 = g)
by the Markov property

=
P(X2 = x2, X1 = x1, X0 = g)

P(X0 = g)
Px2g since the transition matrix is P

...
= Pg x1Px1 x2Px2 g.

We have thus derived an explicit formula for the probability we want,

P(X3 = g |X0 = g) =
∑
x1,x2

Pgx1Px1x2Px2g

which may be written in matrix form as [P 3]gg. To compute it in Python,

1 P = np. array ([[0 .2 , 0.6 , 0.2] , [0.3 , 0 , 0.7] , [0 , 0.5 , 0 .5]])
2 assert a l l (P.sum(axis=1) == 1) # check row sums are a l l equa l to 1
3 (P @ P @ P)[2 ,2] # compute P^3 then p i c k out e lement at [2 , 2]
4 np. l ina lg .matrix_power(P, 3)[2 ,2] # another way to compute P^3

Exercise 4.3 (Extended Markov property). Let X be a Markov chain. The Markov property,
equation (15) says that if we know the present state Xn, then the past (X0, . . . , Xn−1) gives

54 4.1 Markov chains

us no extra information about the next step Xn+1. Prove that the same holds true further
into the future, i.e. for any (x0, . . . , xn+m),

P(Xn+m = xn+m, . . . , Xn+1 = xn+1 |Xn = xn, . . . , X0 = x0)

= P(Xn+m = xn+m, . . . , Xn+1 = xn+1 |Xn = xn).

Example 4.4 (Hiƫng probabiliƟes). A web surfer starts at page α, and from each page picks an
outgoing link at random from that page. What is the chance they hit ω before returning to
α?

ϵ

α

β

δ

ω

γ

Let Xn be the page that the web surfer is on after n clicks, X0 = α, and write X for the
entire process X = (Xn)n≥0. We want to calculate

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
.

This is open-ended—X could first hit those two destinations at any n ≥ 1—so there’s no
clean way for us to condition on the entire path, as we did in Example 4.2. Instead, let’s
condition just on X1:

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
∑
x1

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1, X0 = α

)
P
(
X1 = x1 |X0 = α

)
. (16)

Here we have used a conditional-probability version of the law of total probability. The
regular version is

P(A) = P(A | C)P(C) + P(A | C̄)P(C̄)

and the conditional-probability version can be proved in exactly the same way:

P(A |B) =
P(A ∩B)

P(B)
=

P(A ∩B ∩ C)

P(B)
+

P(A ∩B ∩ C̄)

P(B)

= P(A |B ∩ C)
P(B ∩ C)

P(B)
+ P(A |B ∩ C̄)

P(B ∩ C̄)

P(B)

= P(A | C ∩B)P(C |B) + P(A | C̄ ∩B)P(C̄ |B).

In equation (16), the first term involves conditioning on both X0 and X1, and the extended
Markov property (Example 4.3) says that conditional on X1 the future is independent of X0.
Thus

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
∑
x1

Pαx1 P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X1 = x1

)
.

The final trick is to ‘reset the clock’. Let’s define

πx = P
(
X hits ω at some n ≥ 0
before hitting α

∣∣∣∣ X0 = x

)
.

4.1 Markov chains 55

It doesn’t make any difference whether we start measuring time from n = 0 or from n = 1,
since the process follows the same dynamics regardless, thus

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
∑
x

Pαxπx (17)

and furthermore (by repeating the entire conditioning argument we have just been through)

πx =
∑
y

Pxyπy (18)

and clearly πα = 0 and πω = 1. Rewriting equations (17) and (18) as matrix equations, π is
a 6-dimensional vector with elements in [0, 1] and

P
(
X hits ω at some n ≥ 1
before hitting α

∣∣∣∣ X0 = α

)
=
[
Pπ
]
α
, π = Pπ.

In Python,

1 # S t a t e s a re i n the o r d e r [α ,β ,γ ,δ ,ϵ ,ω]
2 # Set up an ad jacency mat r i x f o r the graph ,
3 # then s c a l e i t so rows sum to 1 (and a s s e r t they do)
4 P = np. array ([[0 ,1 ,1 ,0 ,0 ,0] , [0 ,0 ,0 ,1 ,1 ,0] , [1 ,0 ,0 ,0 ,0 ,1] ,
5 [0 ,1 ,0 ,0 ,0 ,1] , [1 ,0 ,0 ,0 ,0 ,0] , [0 ,0 ,1 ,0 ,1 ,0]])
6 P = P / P.sum(axis=1)[: , np. newaxis]
7 assert a l l (P.sum(axis=1) == 1)
8 # We want to s o l v e P .π=π i . e . (P−I) .π=0, and a l s o π [0]=0 and π [5]=1
9 # Bundle a l l the e q u a t i o n s t o g e t h e r i n a matr ix , and s o l v e with np . l i n a l g . l s t s q
10 A = np. concatenate((P − np. eye(6) , [[1 ,0 ,0 ,0 ,0 ,0] , [0 ,0 ,0 ,0 ,0 ,1]]))
11 π = np. l ina lg . l stsq (A, [0 ,0 ,0 ,0 ,0 ,0 , 0 ,1])[0]
12 # Return the h i t t i n g p r o b a b i l i t y we wanted to c a l c u l a t e
13 (P @ pi) [0]

MEMORY LENGTH

The rule we used to generate pseudo-Shakespeare, “pick the next charactacter based on the
preceding m”, produces better-looking results for larger m—but the larger m is, the more
storage space we need for the lookup table, and the fewer (m + 1)-grams we have with
which to estimate frequencies. If m gets even larger, the algorithm can’t do much more than
regurgitate the input text on which it was trained.

Neural networks can be used to get around these limitations: they can learn how much
information from preceding elements in the sequence should be incorporated into the state
of the Markov chain, and they’re not limited to fixed-m state descriptor. Here is an example
of Shakespeare generated using a neural network rather than trigram frequencies31.

PANDARUS:
Alas, I think he shall be come approached and the day When little srain would be
attain’d into being never fed, And who is but a chain and subjects of his death, I
should not sleep.
Second Senator:
They are away this miseries, produced upon my soul, Breaking and strongly should
be buried, when I perish The earth and thoughts of many states.
DUKE VINCENTIO:
Well, your wit is in the care of side and that.

31Andrej Karpathy, The unreasonable effectiveness of recurrent neural networks, May 2015, http:
//karpathy.github.io/2015/05/21/rnn-effectiveness/. He writes “There’s something magical about Re-
current Neural Networks (RNNs) ... We’ll train RNNs to generate text character by character and ponder
the question ‘how is that even possible?’ ”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

56 4.2 Estimation in a hidden Markov model

4.2. EsƟmaƟon in a hidden Markov model
Example. A person is moving about. At each timestep, we receive a noisy GPS reading of
their current location. How can we estimate their current location?

This is the topic of Example Sheet 3.

4.3 Limit theorems 57

4.3. Limit theorems
When analysing Markov chains, it’s often useful to be able to ask about their long-run
average behaviour. We asked the same question in Section 2 about sums of independent
random variables. Markov chains however have a richer range of possible behaviours, and
it turns out there are three separate ways to ask ‘what is average behaviour?’ To reduce
the mathematical overhead we will restrict attention in this section to time-homogeneous
Markov chains with a finite state space (though most of the results also hold for infinite state
spaces). We will illustrate with two examples, the Markov chain for Cambridge weather from
Section 4.1, and a pathological case.

r

d g

0.2

0.6
0.20.3

0.7

0.5
0.5

α

βγ δ

ϵ

ζ

0.4

1

1

0.6

1 1
0.5

0.5

4.3.1. STATIONARY BEHAVIOUR

DefiniƟon. A Markov chain is said to be stationary if its distribution does not change over
time, i.e. if there is a vector π such that P(Xn = x) = πx for all n. Then π is called the
stationary distribution, and also the equilibrium distribution.

The word ‘stationary’ does not mean that the Markov chain has somehow stopped—a
Markov chain is defined to go on forever, always stepping randomly from state to state. It is
the distribution that is stationary i.e. unchanging.

We can compute a stationary distribution using the same sort of calculations based on
memorylessness that we used in Section 4.1. Take the Cambridge weather Markov chain, for
example. If π is a stationary distribution then, for any n,

πx = P(Xn = x) =
∑
y

P(Xn = x |Xn−1 = y)P(Xn−1 = y) =
∑
y

πyPyx (19)

where P is the transition matrix. In matrix notation, π = πP or equivalently (P − I)⊤π = 0.
To pin down π completely we need an extra equation,

∑
x πx = 1; this equation must hold

because π is a distribution, and it’s necessary because otherwise we could multiply π by a
constant and still have a solution to (P − I)⊤π = 0. In Python,

1 P = np. array ([[0 .2 , 0.6 , 0.2] , [0.3 , 0 , 0.7] , [0 , 0.5 , 0 .5]])
2 A = np. concatenate (((P − np. eye (3)). transpose () , [[1 ,1 ,1]]))
3 π = np. l ina lg . l stsq (A, [0 ,0 ,0 , 1]) [0]

We can compute a stationary distribution for the pathological Markov chain using
exactly the same method, but there is a problem: equation (19) has multiple solutions, even
after imposing the extra equation

∑
x πx = 1. If we just write out all the equations longhand,

πα = 0

πβ = 0.4πα + πγ

πγ = πβ

πδ = 0.6πα + 0.5πζ

πϵ = πδ + 0.5πζ

πζ = πϵ

πα + πβ + πγ + πδ + πϵ + πζ = 1

and solve these equations simultaneously, we discover that the general solution for π =
[πα, πβ , πγ , πδ, πϵ, πζ] is

π = a
[
0, 1/2, 1/2, 0, 0, 0

]
+ (1− a)

[
0, 0, 0, 1/5, 2/5, 2/5

]
(20)

58 4.3 Limit theorems

for any real value a (though only a ∈ [0, 1] will yield a legitimate probability distribution).
In Python, if we look carefully at the output of np.linalg.lstsq() and read the documentation,
we see it telling us that the linear equation does not have a unique solution; there are further
np.linalg tools that can extract the general form of the solution.

Equation (20) actually has a nice intuitive explanation. The Markov chain could be
spending all its time in states {β, γ} with stationary distribution [1/2, 1/2], or it could be
spending all its time in states {δ, ϵ, ζ} with stationary distribution [1/5, 2/5, 2/5].

Theorem (uniqueness of staƟonary distribuƟon). Consider a Markov chain with transition ma-
trix P and a finite state space. The Markov chain is called irreducible if it is possible to
get from any state to any other. If the Markov chain is irreducible, then there is a unique
stationary distribution, and it is the unique solution π to

π = πP, π⊤1 = 1. (21)

This theorem does not say that the chain itself is stationary, only that it has a stationary
distribution. In other words, if we pick the initial state X0 randomly according to π, then
X1 will have distribution π and so will X2 and so on. But if we pick the initial state in some
other way, e.g. we start at X0 = g in the Cambridge weather example, this theorem doesn’t
tell us what will happen.

Example. The Cambridge weather Markov chain can get from any state to any other state;
to get from g to r takes two steps, and all the others can be achieved in one step. Therefore
it is irreducible, therefore it has a unique stationary distribution.

The pathological Markov chain is not irreducible, because it is impossible to get from
β to α.

4.3.2. DETAILED BALANCE

Often, when we want to find the stationary distribution, there’s nothing for it but to use
np.linalg and solve a matrix equation. In some special cases the Markov chain has a form that
lets us find the stationary distribution with very little algebra. This seems like a curiosity, not
worth mentioning in a data science course—except that there is a clever trick for generating
random variables from general Bayesian posterior distributions that relies on exactly this
special case. The clever trick is called Gibbs sampling, and it is taught in Part II Machine
Learning and Bayesian Inference.

Theorem (detailed balance). Let X be an irreducible Markov chain with transition matrix P .
If there exists a vector π such that 0 ≤ π ≤ 1 and

∑
x πx = 1 and

πxPx y = πyPy x for all states x and y (22)

then π is the stationary distribution (which we know is unique, since the chain is irreducible).
Equation (22) is called the detailed balance condition.

Exercise 4.5. Calculate the stationary distribution of the Markov chain

a b c
α α

1− α1− α

1− α α

Is it irreducible? Yes, it’s easy to see that there’s a path from any state to any other.
Therefore there is a unique stationary distribution. It never hurts to try to solve the detailed
balance equations; either we find the stationary distribution without much work, or we quickly
discover that they can’t be solved and we have to solve the full equations (21). In this case,
the detailed balance equations are

for (a, b) and (b, a): πaα = πb(1− α)

for (a, c) and (c, a): πa0 = πc0

for (b, c) and (c, b): πbα = πc(1− α)

for (a, a) etc.: πa(1− α) = πa(1− α) etc.

4.3 Limit theorems 59

and they have the solution

πb = πa
α

1− α
, πc = πa

(α

1− α

)2
.

Putting in the constraint πa + πb + πc = 1, we get[
πa, πb, πc

]
=

1

1 + α/(1− α) + α2/(1− α)2

[
1,

α

1− α
,
(α

1− α

)2]
.

Exercise 4.6 (Random walk on an undirected graph). A knight moves on an otherwise empty chess-
board, each timestep picking one of its legal moves at random (out of 8 legal moves if it is
in the center of the board, and 2 legal moves if it is in a corner). Show that the stationary
probability of being in position x is mx/336, where mx is the number of legal moves out of
position x.

We should first check whether the Markov chain described in the question is irreducible,
since otherwise there isn’t even a unique stationary distribution. This is just a matter of
sketching a chessboard and persuading ourselves that a knight can indeed get from any
position to any other position, given enough moves.

The question tells us the stationary distribution and asks us to verify it. We could plug
it into the full equations (21), but if it happens to solve the detailed balance equations then
that is sufficient and our work will be simpler. The detailed balance equations are

mx

336
× 1

mx
=

my

336
× 1

my
if x ↔ y is legal,

mx

336
× 0 =

my

336
× 0 if x ↔ y is illegal.

These equations are certainly true, and they are the only equations that need to be satisfied,
since x → y is legal if and only if y → x is legal. Therefore the suggested distribution solves
detailed balance.

Finally, we need to verify that the suggested distribution is indeed a distribution, i.e.
that it sums to 1. Counting the number of possible moves from every position on the
chessboard gives a total of 336, thus

∑
x mx/336 = 1.

It’s easy to check that the result described here can be generalised to a random walk
on any undirected graph.

4.3.3. ERGODIC THEOREM

Theorem (ergodicity). Let X be an irreducible Markov chain with stationary distribution π.
Then the long-run average of time spent in each state converges to π. Mathematically,

E
(1
n

n∑
i=1

1Xi=x

)
→ πx as n → ∞, for all states x. (23)

If the Markov chain’s initial state X0 were chosen from distribution π, then we know from
Section 4.3.1 that Xn would have distribution π for every n, thus E1Xi=x = P(Xi = x) = πx

for all i, and so (23) would be true exactly, no need for a limit. What’s remarkable is that
the theorem holds regardless of how the initial state is chosen.

Example. Consider the pathological Markov chain, starting at X0 = α. This chain is not
irreducible, so the ergodic theorem doesn’t apply directly. But we can still say how the
chain behaves: with probability 0.4 it jumps to X1 = β, and thereafter it behaves just like
an irreducible chain on {β, γ} and spends half its time in each of those two states; or with
probability 0.6 it jumps to X1 = δ, and thereafter it behaves just like an irreducible chain
on {δ, ϵ, ζ} and spends roughly 20% of its time in δ, 40% in ε, and 40% in ζ.

4.3.4. L IMITING BEHAVIOUR

In the Cambridge weather Markov chain, the ergodic theorem tells us that the long-run
fraction of rainy days is equal to πr, where π is the stationary distribution. So we’d expect

60 4.3 Limit theorems

that, if we pick a day arbitrarily, the probability of rain is πr. This is works for the Cambridge
weather example, but it doesn’t always work... the caveat is illustrated by states β and γ in
the pathological Markov chain: if the chain starts in X0 = β then Xn = β for even n and
Xn = γ for odd n, and so we can’t make a blanket claim about ‘typical Xn’. The following
theorem gives a general condition under which time-averages correspond to typical values.

Theorem. Let X be a Markov chain. A state x is said to be periodic if there exists an n0

such that P(Xn = x | X0 = x) > 0 for all n ≥ n0. If the chain is irreducible and has an
aperiodic state, then all its states are aperiodic, and furthermore

P(Xn = x |X0 = y) → πx as n → ∞, for all states x.

Note that P(Xn = x |X0 = y) = [Pn]x y where P is the transition matrix, according to our
calculations in Example 4.2.

	What is data science?
	`Surprised by data': reasoning about uncertainty
	`Field of study': scientific modeling
	The foundations

	Probabilistic models
	Random samples
	Markov models
	Descriptive models
	Causal models
	Common random variables
	Independence and joint distributions

	Distributions of random variables
	Working with random variables
	Custom distributions
	Limit theorems
	Importance sampling
	The empirical distribution

	Inference
	Quantifying a question
	Bayesianism
	Frequentism
	Model selection
	Pragmatic inference

	Stochastic processes
	Markov chains
	Estimation in a hidden Markov model
	Limit theorems
	Stationary behaviour
	Detailed balance
	Ergodic theorem
	Limiting behaviour

	Feature spaces

