
25

2. DistribuƟons of random variables

Goals. Get practice at generating and reasoning about random variables.
Understand what the empirical distribution is, and what it is for. See how
limit theorems are used, in the context of Monte Carlo estimation. Form an
intuitive understanding of how random samples behave.

2.1. Working with random variables
ApplicaƟon. For most traffic flows on the Internet, the rate at which the server sends data
is controlled by the TCP algorithm. It aims to detect Internet congestion, and it adjusts the
data rate to strike a balance between ‘use all available capacity’ and ‘don’t cause overload’.
It does this by steadily increasing the sending rate (by 1 packet per second every round trip
time) until a packet is dropped, which signifies congestion, whereupon it cuts the sending
rate in half. This produces the characteristic “TCP sawtooth”.

Suppose a network operator wants to build in enough capacity to support 1000 users
each running at 30 kB/sec. How much capacity is needed? In the worst case the sawteeth
might all be aligned, giving a peak rate of 40 MB/sec. (To find this, let xpeak be the peak
rate, note that the trough is xtrough = xpeak/2 because of TCP’s congestion rule. The average
is (xtrough + xpeak)/2 and this is 30 kB/sec. Solving for xpeak gives 40 kB/sec.) Intuitively
we might guess that perfect alignment is unlikely, and that the troughs on one sawtooth are
likely to cancel out the troughs on another. This is called statistical multiplexing. How much
statistical multiplexing should we expect?

RULES FOR EXPECTATION AND VARIANCE

This section of the course is all about numerical random variables. What makes them partic-
ularly useful is that they can be summed and averaged, which lets us define their expectation.
They’re so useful that we often write ‘random variable’ to mean ‘numerical random variable’,
and use other wording when it’s not numerical.

EX =
∑
x

xP(X = x) for a discrete random variable,

EX =

∫
x

xf(x) for a continuous random variable with density f.

For a function of a random variable Y = f(X), there are two equivalent ways to compute This equality is
called the law of
the unconscious
statistician,
because it’s easy to
interchange them
without even
realizing one is
doing so.

the expectation:
Ef(X) =

∑
y

yP(f(X) = y) =
∑
x

f(x)P(X = x)

and similarly for continuous random variables. Now, some handy results about expectation.
For any random variable X, the variance and standard deviation are

VarX = E
(
(X − EX)2

)
, std. dev(X) =

√
VarX.

26 2.1 Working with random variables

For all constants a and b,

E(aX + b) = a(EX) + b

Var(aX + b) = a2 VarX
std.dev(aX + b) = a2 std. dev(X).

For any two random variables X and Y ,

E(X + Y) = (EX) + (EY).

For any two independent random variables X and Y ,

E(XY) = (EX)(EY)

Var(X + Y) = VarX +VarY
std.dev(X + Y) =

√
std. dev(X)2 + std. dev(Y)2.

The covariance of two random variables X and Y is

Cov(X,Y) = E
(
(X − EX) (Y − EY)

)
.

The conditional expectation E(X | Y = y), for a discrete random variable Y , is

E(X | Y = y) =
∑
x

xP(X = x | Y = y) =
∑
x

x
P(X = x, Y = y)

P(Y = y)
.

We write E(X | Y) to mean “Define f(y) = E(X | Y = y), and return f(Y)”. This is a
random variable (because it’s a function of Y which is itself a random variable). When Y is
a continuous random variable, P(Y = y) = 0 so the conditioning doesn’t make sense—it’s a
divide-by-zero error—so we just replace probabilities by densities and sums by integrals.

CONFIDENCE INTERVALS

Here are two facts about the normal distribution: if X has a normal distribution then so
does aX + b for any constants a and b; and the interval [−1.96, 1.96] is a 95% confidence
interval for Normal(0, 1) i.e.

P
(
−1.96 ≤ Normal(0, 1) ≤ 1.96

)
≈ 0.95.

Example. What is a 95% confidence interval for Normal(µ, σ2), the normal distribution with
mean µ and variance σ2?

Let X ∼ Normal(µ, σ2). Using the rules for expectation and variance, E(X − µ) =
(EX) − µ = 0, and Var(X − µ) = VarX = σ2, thus Var

(
(X − µ)/σ

)
= 1. So (X − µ)/σ ∼

N(0, 1), thus

P
(
−1.96 ≤ X − µ

σ
≤ 1.96

)
≈ 0.95.

Rearranging the expression inside the brackets,

P
(
µ− 1.96σ ≤ Normal(µ, σ2) ≤ µ+ 1.96σ

)
≈ 0.95. (5)

* * *

Here’s a general purpose rule of thumb:

A random variable X can be approximated by Normal(EX,VarX).

This is so useful and simple that it can’t possibly be true—but what’s surprising is that it’s
often nearly true. We’ll see circumstantial evidence for why the approximation is so good in
Section 2.3, and in the example sheet you’ll investigate cases where it doesn’t work.

2.1 Working with random variables 27

Example. I throw a die 100 times and compute the total score. What range of values should
I expect?

Let X be the outcome of a single throw. We can explicitly calculate its mean and
variance:

EX = 1× 1/6 + 2× 1/6 + · · ·+ 6× 1/6 = 7/2,

VarX = (1− 7/2)2 × 1/6 + · · ·+ (6− 7/2)2 × 1/6 = 35/12.

Let Y be the sum of 100 independent copies of X. By the rules for mean and variance of
sums of independent random variables,

EY = 100× 7/2, VarY = 100× 35/12.

Using the normal approximation, Y ≈ Normal(700/2, 3500/12). Applying the approximation(5),
we are 95% confident that Y lies in the range [316, 384].

Example (staƟsƟcal mulƟplexing). Returning to the TCP example, consider an arbitrary instant
in time. Let X1,…,Xn be the sending rate of each of n = 1000 flows at this time, and let
Y = X1 + · · ·+Xn be the total.

We might have caught a flow at any point in its sawtooth, so each Xi might take any value
between the trough and the peak i.e. in the range [2x/3, 4x/3] where x = 30 kB/sec is the
average rate we want to support. Furthermore, because of the shape of the sawtooth, each
value in this range is equally likely. The appropriate distribution is thus

Xi ∼ Uniform(2x/3, 4x/3)

After looking up the formulae for mean and variance on Wikipedia,

EXi =
2x/3 + 4x/3

2
= x

VarXi =
(4x/3 − 2x/3)2

12
=

x2

27
.

Using the rule for expectation of sums,

EY = EX1 + · · ·+ EXn = nx

and assuming the Xi are all independent then

VarY = VarX1 + · · ·+VarXn =
nx2

27

std. dev(Y) =
√
VarY =

√
n

x√
27

.

With probability 95%, Y will lie in the range[
EY − 1.96 std. dev(Y), EY + 1.96 std. dev(Y)

]
which evaluates to [29.8, 30.2] MB/sec. This is much less than the worst-case value 40
MB/sec.

28 2.2 Generating custom random variables

2.2. GeneraƟng custom random variables
ApplicaƟon. I’ve collected logs from my web server, n = 68, 506 records, and I want to
program a random number generator that mimics the file sizes I see in these logs. I start by
plotting a histogram of file size, shown as (a) below. This is useless, because nearly all sizes
are tiny and a handful are gigantic, and the binning of the histogram hides all the detail. A
good way to see more detail is to plot what is known as the empirical distribution,Warning: there is

also the empirical
cumulative
distribution
function, which
counts the number
of datapoints that
are ≤ xi. When you
read ‘distribution
function’, you need
to work out from
the context whether
the writer means a
cumulative
distribution
function or a tail
distribution
function.

F̂ (x) =
1

n

(
how many items there are ≥ x

)
.

which is easy to plot by sorting the data and putting it on the x axis. The empirical
distribution of web server file sizes is shown in (b). It’s still not showing very much detail
because of the scale, so I’ll apply the golden rule of engineering: “if you don’t like what you
see, take logs”. In (c) I’ve taken logs of the x axis and in (d) I’ve also taken logs of the y axis,
and that makes my data looks nice and regular. The dotted reference line is at log10(10/n)
— this way I can see that the precipitous drop at the right hand size of (d) isn’t just a single
outlier, but it’s not much more than 10 datapoints.

0

20000

40000

60000

0 250000050000007500000

size [Bytes]

(a)

0.00

0.25

0.50

0.75

1.00

0 250000050000007500000

size [Bytes]

(b)

0.00

0.25

0.50

0.75

1.00

10 15 20

log2 size [Bytes]

(c)

−5

−4

−3

−2

−1

0

10 15 20

log2 size [Bytes]

(d)
How do I know which standard random variable to use, to match this dataset? Or, even
better, can I construct a custom random number generator to match? It looks like the data
is trying to tell me there are two straight lines (plus a handful of huge files, which I’ll ignore
for now), i.e. that for some parameters α, β, γ and θ which I can fit from the data,

log F̂ (x) ≈ α− β logx− γmax(logx− θ, 0).

−5

−4

−3

−2

−1

0

5 10 15 20 25

log2 size [Bytes]

THE DISTRIBUTION FUNCTION AND THE INVERSION METHOD

The distribution function of a random variable X is

F (x) = P(X ≥ x).

Sometimes it’s easier to work with the distribution function rather than the density:

2.2 Generating custom random variables 29

Example. What is the density function of the continuous random variable X generated by
this code?
1 def rx () :
2 U = random.random()
3 return U*U

Let’s work out its distribution function first.

P(X ≥ x) = P(U2 ≥ x) = P(U ≥
√
x).

Since U is a simple uniform random variable on [0, 1], P(U < u) = u, and so P(X ≥ x) =
1−

√
x. For continuous random variables, the distribution function and the density function

are related to other by integration, P(X ≥ x) =
∫∞
x

f(y) dy, so f(x) = −F ′(x). In this case,
we end up with f(x) = 1/(2

√
x).

There is a universal way to generate a random variable given its distribution function,
called the inversion method. (1) Generate a simple random variable U ∼ Uniform[0, 1]. (2)
Solve F (X) = U . (3) That’s it, X has distribution function F . This plot shows why the
method works:

it ensures that for every x the event {X ≥ x} is precisely the event {U ≤ F (x)}, which has
probability F (x). Intuitively, in regions where the density f is high then the distribution F
will be steep, and so X is more likely to hit those regions.

The inversion method requires us to solve F (X) = U , which is easy to do algebraically
for simple continuous functions like the two-straight-line fit we found earlier. The method
is also correct for discrete random variables, whose step functions are staircases, but here
we usually need an algorithmic solution rather than an alegraic one. Section 2.5 and the
example sheet look more closely at generating discrete random variables.

* * *

It’s worth mentioning some terminology for describing distribution functions. The

first quartile is a number x such that P(X ≤ x) = 25%
median ... P(X ≤ x) = 50%
third quartile ... P(X ≤ x) = 75%
p-percentile ... P(X ≤ x) = p%

For discrete random variables it may not be possible to get exact percentiles, and there is no
convention about rounding.

The range [x1, x2] is called a 95% confidence interval if P(x1 ≤ X ≤ x2) = 95%. Often
we choose a two-sided confidence interval with P(X < x1) = P(X > x2) = 2.5%. In some
contexts it may be more useful to report a one-sided confidence interval, either [x1,∞) or
(−∞, x2].

The cumulative distribution function is CDF(x) = P(X ≤ x). What we’ve been calling
the distribution is also called the tail distribution function, to disambiguate the two.

30 2.3 Limit theorems

2.3. Limit theorems
ApplicaƟon. In computer graphics rendering and shading, we can compute the colour a pixel
on the screen by reasoning about light rays. First figure out the surface point Q that is to be
shown at pixel P , by casting a ray from the camera through P and finding what surface it
hits. Then figure out the colour and shading of Q by adding up all the light rays that might
be illuminating it and reflecting out through P .

The surface might be perfectly reflective, or perfectly diffuse, or more generally we can model
it with a specular lobe function BRDF(θ, ϕ), which measures how much light is emitted at
angle ϕ when it comes in at angle θ.

When we take into account the intensity of light glancing the surface as a function of angle
θ, the total light reflected at angle ϕ, from a point light source of intensity I, is

I cos(θ)BRDF(θ, ϕ).

If illumination comes from an area light source, then we treat it as a though the total intensity
I is smeared across a set of point light sources:

∫ y1

y=y0

I

y1 − y0
cos
(
tan−1(y/x)

)
BRDF

(
tan−1(y/x), ϕ

)
dy.

* * *

In a more abstract setting, suppose we want to compute∫ b

y=a

g(y)
1

b− a
dy.

The obvious method is to split the y range into n equally sized pieces, and approximate the
function by a series of rectangles, e.g. taking the height of the rectangle to be the value of g
at the midpoint.

≈ 1

n

n∑
i=1

xi, where xi = g
(
a+

b− a

n

(
i− 1/2

))
.

2.3 Limit theorems 31

But there’s actually nothing special about sampling g at grid points. Why not just pick
the sampling points at random? In other words, pick n independent Uniform[a, b] random
variables Y1, . . . , Yn, and approximate

≈ 1

n

n∑
i=1

Xi, where Xi = g(Yi).

This is called Monte Carlo integration. Is it any good, and if so why?

EXPECTATION

Let’s calculate the expected value of the Monte Carlo approximation.

E
(1
n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

EX1 by linearity of expectation

=
1

n
nEX1 since they are IID

= Eg(Y1) =

∫ b

y=a

1

b− a
g(y) dy by definition of expectation.

So, the expected value is exactly the integral we want to compute. But this is just punting
the question. What does the expected value have to do with anything?

WEAK LAW OF LARGE NUMBERS

Let’s calculate the probability of error. Let µ = EX1 be the integral we want to compute,
and let ε > 0. Then

P
(∣∣∣ 1

n

∑
Xi − µ

∣∣∣ > ε
)
= P

((
n−1

∑
Xi − µ

)2
ε2

> 1

)
by simple algebra

= E
(
1
[(n−1

∑
Xi − µ

)2
ε2

> 1
])

since E1A = P(A)

≤ E
((n−1

∑
Xi − µ

)2
ε2

)
since 1x≥1 ≤ x

=
1

ε2
Var

(1
n

∑
Xi

)
by linearity of E and definition of Var

=
1

n2ε2
n VarX1 by linearity of Var, and independence

=
1

n

VarX1

ε2
.

So, the more samples we use the better accuracy we get, and the accuracy depends on the
variance of an individual sample.

This result is known as the weak law of large numbers. Another way to state it is in Why is it called
weak? There is also
a strong law, which
says
P(errn → 0) = 1, as
opposed to the weak
law P(errn > ε) → 0.
The strong law
implies the weak
law, but is harder
to prove.

terms of the distribution function,

P
(1
n

n∑
i=1

Xi ≥ x
)
→ 1x≥µ as n → ∞

for all x where the right hand side (viewed as a function of x) is continuous.
It’s useful to know not only that there is convergence, but also how fast convergence

happens. We just derived an upper bound on the probability of error. Is it tight?

THE CENTRAL LIMIT THEOREM

In Section 2.1 we saw a general purpose approximation:

X1 ≈ Normal(µ, σ2) where µ = EX1 and σ2 = VarX1.

32 2.3 Limit theorems

If we apply this approximation to all the Xi,∑
Xi ≈ Normal(nµ, nσ2)

1

n

∑
Xi ≈ Normal

(
µ,

σ2

n

)
1

n

∑
Xi − µ ≈ Normal

(
0,

σ2

n

)
n−1

∑
Xi − µ√

σ2/n
≈ Normal(0, 1).

It is a mathematical theorem that this approximation becomes increasingly accurate (assum-
Another result, the
Berry-Esseen
theorem, gives a
bound on the error
in this limit
statement.

ing the Xi are independent and that µ and σ2 are finite). The central limit theorem makes
this precise, as a statement about convergence of the distribution function:

P
(√

n
(n−1

∑
Xi − µ

σ

)
≥ x

)
→ P

(
Normal(0, 1) ≥ x

)
as n → ∞, for all x.

I find it more helpful to remember the central limit theorem when it’s written as an approx-
imation,

1

n

n∑
i=1

Xi ≈ Normal
(
µ,

σ2

n

)
.

We could use this to estimate how many samples we need for the Monte Carlo integration
to reach a target level of accuracy, if we knew σ. It tells us that, with probability 95%,
n−1

∑
Xi is within ±1.96σ of µ. We don’t know the true σ, but we can just estimate it with

Monte Carlo approximation!

σ2 = E(X1 − µ)2 ≈ 1

n

n∑
i=1

(Xi − µ)2

and also plug in the Monte Carlo approximation for µ. Our computer graphics code could
keep generating more and more samples until it decides the error is small enough as to be
imperceptible.

This should make us uneasy! How come it’s OK to say “Plug in the Monte Carlo
approximations to get a point estimate for σ”, and at the same time “Don’t just use the
plain Monte Carlo approximation for µ, use the central limit theorem to work out how
accurate it is”? We will revisit this question in Section 3.

2.4 Importance sampling 33

2.4. Importance sampling
In the computer graphics problem of Section 2.3, we studied how to use Monte Carlo inte-
gration to calculate the illumination at a pixel.

The answer we want is ∫ y1

y=y0

1

y1 − y0
g(y) dy

where g(y) is some complicated formula involving the specular characteristics of the surface
and the angle of illumination. We approximated it by

1

n

n∑
i=1

g(Yi)

where Y1, . . . , Yn are independent random variables drawn uniformly from the range [y0, y1].
In words,

reflected light
at angle ϕ

≈ 1

n

n∑
i=1

light due to a simulated ray coming from
a random point Yi on the light source.

We found that the approximation error is of the order of σ/
√
n, where σ is the standard

deviation of the answer from a single light ray. This suggests two questions. First, is there
a way to change the simulation to reduce σ? Second, if it’s a highly reflective surface, then
there isn’t any need to simulate the entire light source, since only a few pieces of it will end
up reflected at angle ϕ: how can we change the simulation to achieve this? It turns out that
these two questions are asking exactly the same thing.

Let’s first try a naive change to the simulation. Physics tells us that the BRDF function
is symmetrical. Consider picking a random point Y on the light source, but not uniformly at
random: pick it instead so that angles closer to the center of the specular lobe are more likely.
(See Section 2.2 for how to generate a random variable from an arbitrary distribution.) Let
the density function be f(y), and let X = g(Y) as before. Then

EX =

∫ y1

y0

g(y)f(y) dy

and if we use Monte Carlo integration we’ll get an answer concentrated around EX — which
is wrong, not the integral we want. But looking at the integral more closely suggestions
the fix: we should use X ′ = g(Y)/f(Y) instead, so that f cancels out, and we end up with
exactly the integral we want. In words,

reflected light
at angle ϕ

≈ 1

n

n∑
i=1

(
light due to a simulated ray coming from
a random point Yi drawn from density f

/
f(Yi)

)
.

This is called importance sampling. Whatever distribution we choose for the Yi, Monte Carlo
integration will give us the right answer, and we have a whole design space of sampling
distributions to choose from. Our aim is to choose a density function f to reduce σ2 =
Var

(
g(Y)/f(Y)

)
.

34 2.4 Importance sampling

* * *

It’s surprisingly easy to design the optimal sampling distribution. From the definition of
variance,

Var g(Y)

f(Y)
= E

[(g(Y)

f(Y)
− µ

)2]
= E

[(g(Y)

f(Y)

)2]
− µ2 where µ = E

g(Y)

f(Y)
.

The whole point of importance sampling is that µ doesn’t depend on how we choose f . The
only term we have left to minimize is

E
[(g(Y)

f(Y)

)2]
=

∫ (g(y)
f(y)

)2
f(y) dy =

∫
g(y)2

f(y)
dy

and it turns out (using some standard tools from optimization theory) that to minimize this
we should pick a density function f such that f(y) is proportional to g(y).

Unfortunately, if we try to sample a random variable from const × g(y) using the
inversion method, we have to integrate g(y), which defeats the whole purpose of Monte
Carlo integration!

Importance sampling is nonetheless useful as a heuristic. The full distributed ray
tracing algorithm, taking account of indirect illumination, is “To work out the shading at
a point Q, sample light rays by following them backwards; pick a random incoming angle
at each bounce, and heuristically try to pick an angle in proportion to how much light is
expected from that angle.” No matter how bad the heuristic, importance sampling will give
the right answer for large enough n. If the heuristic is good, it will give the right answer for
small n.

This is why specular-to-diffuse lighting is tricky: the question “which angle is likely to
give most illumination?” can’t be answered with only local knowledge at the diffuse surface.22

76

Handing indirect illumination: 2

light

light

ª diffuse to diffuse
u handled by radiosity

n covered in the Part II
Advanced Graphics
course

ª specular to diffuse
u handled by no usable

algorithm
u some research work has

been done on this but
uses enormous amounts
of CPU time

22Slide from IA Introduction to Graphics.

2.5 The empirical distribution 35

2.5. The empirical distribuƟon
The empirical distribution function of a dataset x1, . . . , xn is

F̂ (x) =
1

n

(
how many items there are ≥ x

)
.

In Section 2.2 we looked at fitting: we started with a family of distribution functions Fθ(x)

with some parameter or list of parameters θ, we picked specific parameter values θ̂ so that
F̂ (x) ≈ Fθ̂(x), and then we used the inversion method to generate random variables from
this fitted distribution. We were implicitly assuming that the empirical distribution function
of a random sample should be close to the true distribution function from which the random
sample was generated. Now, having learnt about limit theorems in Section 2.3, we can
investigate this assumption.

Consider a random sample X1, . . . , Xn, independent random variables with common
distribution function F (x) = P(Xi ≥ x). Let F̂n(x) be the empirical distribution function.
Then

EF̂n(x) = E
(∑n

i=1 1Xi≥x

n

)
= E1X1≥x = P(X1 ≥ x) = F (x).

By the weak law of large numbers,

P
(
|F̂n(x)− F (x)| > ε) → 0 as n → ∞

for any ε > 0. By the central limit theorem,

F̂n(x) ≈ Normal
(
F (x),

σ2

n

)
where σ2 = Var 1X1≥x = F (x)

(
1− F (x)

)
and so a 95% confidence interval for F̂n(x) is

P
(
F̂n(x) is in the range F (x)± 1.96

√
F (x)(1− F (x))

n

)
≈ 0.95.

RESAMPLING

When all we have is a dataset, how do we choose which family of distributions Fθ(x) to fit?
Sometimes there are sound scientific reasons for choosing a particular family, and our goal
is to integrate this background scientific knowledge with the dataset at hand. If there is no
background science, then it’s daft to use the data to fit a parameterized distribution function
as we did in Section 2.2 when a perfect fit is staring us in the face, namely the empirical
distribution itself! This is a perfectly valid distribution function: it starts at 1, and ends at
0, and is decreasing.

We can sample from the empirical distribution function using the inversion method—
and a moment’s thought tells us that this is exactly the same as picking a value at random
from the dataset, each item in the dataset equally likely. The overall concept, that the best-
fitting distribution for a dataset is nothing other than its empirical distribution, is called
resampling. Conventionally, a superscript ∗ denotes a random variable drawn in this way
from the empirical distribution.

36 2.5 The empirical distribution

Example 2.1 (Exact resampling). Given a dataset x1, . . . , xn, what are EX∗ and VarX∗? From
the definition of expectation,

EX∗ =
∑

x∈{x1,...,xn}

xP(X∗ = x) =
∑
i

xi
1

n

i.e. the sample mean, often written x̄. From the definition of variance,

VarX∗ =
∑

x∈{x1,...,xn}

(x− x̄)2 P(X∗ = x) =
∑
i

(xi − x̄)2
1

n

i.e. the sample variance.

Example 2.2 (Monte Carlo resampling). I collected a dataset x1, . . . , xn and I found the sample
mean x̄. If I repeat the exercise and collect further datasets, how much variability should I
expect to see in the sample mean?

The best-fitting distribution is the dataset itself, and the best we can do is assume that
subsequent datasets will be drawn from the same distribution. In other words, the next time
I collect data, I’ll expect to see something like X̄∗

n, the sample mean of n random values
drawn from the empirical distribution. This is a random variable. It’s impractical to do an
exact calculations about the distribution of X̄∗

n as we did in Example 2.1 because there are
so many possible values that X̄∗

n might take—but it’s straightforward to use Monte Carlo
approximation instead, to find e.g. P(X̄∗

n ≥ x) or to draw a histogram.

1 x = [13 , 5 , 2 , . . .] # the d a t a s e t
2 def sim_mean() :
3 n = len (x)
4 X = random. choices (x , k=n) # k = number o f samples to draw
5 return sum(X)/n
6
7 mc_samples = [sim_mean() for i in range(100000)]
8 matplotlib . pyplot . h ist (mc_samples)

Example 2.3 (Parametric resampling). I collected a dataset x1, . . . , xn, and I found that the max-
imum value was m. If I repeat the exercise and collect further datasets, how much variability
should I expect to see in the maximum? Resampling from the empirical distribution is unable
to give an answer > m, but intuitively I feel that a new dataset might have larger values.

The real question here is: where does my intuition ‘larger values are possible’ come
from, and how can I translate it into maths? Perhaps my intuition comes from seeing a
straight line on a log-plot of the empirical distribution, as in Section 2.2. If this is so, then I
could construct a new semi-parametric distribution function, which starts with the empirical
data and switches over at some point to a straight line, whose slope and intercept parameters
are fitted from the data. Sampling from this semi-empirical distribution could potentially
produce values > m.

* * *

When should we use parametric models and when should we use the dataset itself, in
the form of the empirical distribution? There are no general rules.

2.5 The empirical distribution 37

• A dataset cannot tell us about values beyond the dataset. This has to come from our
background knowledge or intuition. Integrating datasets and background knowledge is
an art.

• A parametric distribution saves space: it only needs us to store a handful of parameters,
rather than the full dataset. But this is often a premature optimization. For a small
dataset of a few tens of thousands of values, on a modern computer, you should spend
your time thinking about modeling and not about optimizing storage. For a large
dataset, a model with a handful of parameters cannot hope to capture the richess of
the data.

• Neural networks are parametric models, one parameter per weight of an edge. A neural
network trained for simple image classification might take 140 million parameters, one
for each connection. The human brain has roughly 1015 connections, and a human
lifetime is roughly 2.5× 1015 microseconds. It seems that making sense of data is more
about what you do with it than how you can compress it.

• High-dimensional modeling, i.e. modeling with more parameters than there are samples
in the dataset, is an area of active research.

PARTICLE FILTERS

ApplicaƟon. Suppose we’re trying to pinpoint a person’s location, based on noisy GPS read-
ings. First, imagine that the person is not moving, and that we simply want to draw a shape
on a map to indicate where the person is likely to be. We could represent our uncertainty
about the person’s location by a probability density function, with f0(x) our initial belief
(spread widely over a map region), and ft(x) our belief after t GPS readings. Using Bayes’
rule,

ft(x) =
P(rt | x) ft−1(x)∫

y
P(rt | y) ft−1(y) dy

(6)

where rt is the reading at time t. We could implement this for example by storing an array
with the value of ft(x) at at every location x on a fine enough mesh, and updating the entire
array every timestep, replacing the integral by a sum over all points on the mesh.

To take account of motion, we could add dimensions to x for current velocity and
current mode (walking, running, cycling); and we could change (6) to include the system
dynamics—i.e. include terms describing how likely a new location is given the old location
and velocity, and how likely a new velocity is given the old velocity and mode. The ft(·)
array would be gigantic.

If more sensors are available, e.g. the gyroscope and compass and accelerometer on a
mobile phone, we could change (6) to include terms describing the chance of each of those
readings given the present state. This is known as sensor fusion.

Instead of storing the density function ft(·) as an array of values over mesh, why not
approximate it by a random sample drawn from the distribution? We’ve already shown that
the empirical distribution converges to the true distribution as sample size increases. We
just need an empirical equivalent of (6), i.e. an efficient way to generate a sample from ft(·)
given a sample from ft−1(·) and an observation rt.

This approach works, and it is called a particle filter. Here is an example23. It shows a
cluster of particles representing the current belief about a person’s position inside a building.
The readings are gyroscope and compass and accelerometer. The line shows the path that
the person actually followed.

23Julian Straub. “Pedestrian Indoor Localization And Tracking Using A Particle Filter Combined with
a Learning Accessibility Map”. MA thesis. Technische Universität München, 2010. url: http://people.
csail . mit . edu / jstraub / pub / Pedestrian - Indoor - Localization - and - Tracking - using - a - Particle -
Filter-combined-with-a-learning-Accessibility-Map/.

http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/
http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/
http://people.csail.mit.edu/jstraub/pub/Pedestrian-Indoor-Localization-and-Tracking-using-a-Particle-Filter-combined-with-a-learning-Accessibility-Map/

38 2.5 The empirical distribution

	What is data science?
	`Surprised by data': reasoning about uncertainty
	`Field of study': scientific modeling
	The foundations

	Probabilistic models
	Random samples
	Markov models
	Descriptive models
	Causal models
	Common random variables
	Independence and joint distributions

	Distributions of random variables
	Working with random variables
	Generating custom random variables
	Limit theorems
	Importance sampling
	The empirical distribution

	Inference
	Feature spaces
	Stochastic processes

