
IB FoundaƟons of Data Science
Damon Wischik, Computer Laboratory, Cambridge University
Michaelmas Term 2017

• There will be 12 lectures (held in Lecture Theatre 1 at 11am). The timetabling is
erratic; the calendar below may help.

• There will be three example sheets, combining pen-and-paper work with practical work.
The material covered in the practicals may be tested in the exam, but the practicals
themselves won’t be graded. Example sheets will be handed out in advance of the
material they cover.

• There will be four practical help sessions (held in the Intel Laboratory at 11am). These
are optional. You can ask your college supervisor for any help you need, or you can
come to the help sessions, or you can do both.

Mon Tue Wed Thu Fri
Oct 5 6

FDS
Ex.0

9 10 11 12 13
FDS FDS FDS
Ex.1
16 17 18 19 20
FDS prac FDS

Ex.2
23 24 25 26 27
FDS FDS prac

Nov 30 31 1 2 3
prac FDS FDS

Ex.3
6 7 8 9 10

FDS
13 14 15 16 17

FDS
20 21 22 23 24

prac
27 28 29





1

0. What is data science?
The Harvard Business Review called data science “the sexiest job of the 21st century”1, and
the Economist says “The world’s most valuable resource is no longer oil, but data”2. So it
is no surprise that data science is a label that many people have seized upon, to mean many
different things. Here is my attempt at a definition:

Data science is any field of study where you can be surprised by data.

What do you think data science is? Note down your answer now, and again at the end of
the course.

0.1. ‘Surprised by data’: reasoning about uncertainty
Here are some results from a survey of undergraduates, 15 female, 94 male, 4 other / didn’t
specify.

F M X
I am treated fairly in lectures yes 14 86 ·

no 1 8 ·
I’m comfortable asking questions str.agree 2 36 ·

str.disagree 10 36 ·

Simple percentages say that female students are more likely to say they’re treated fairly
in lectures than male students, and yet they’re less comfortable asking questions, which seems
surprising—but when we look at actual numbers rather than percentages we intuit that the
numbers are so small we might expect some mixed signals. Is this intuition correct? In other
words, what counts as surprising, and what counts as chance variation?

Data science is about fields of study where you can be surprised by data. To say what’s
suprising, we need to be able to reason about uncertainty. Here is a quote from an astronomer,
about possible detection of an exomoon, which illustrates that reasoning about uncertainty
does not come naturally:

The work by Dr Kipping, his Columbia colleague Alex Teachey and citizen scientist
Allan R Schmitt, assigns a confidence level of four sigma to the signal from the
distant planetary system. The confidence level describes how unlikely it is that
an experimental result is simply down to chance. If you express it in terms of
tossing a coin, it’s equivalent to tossing 15 heads in row.
But Dr Kipping said this is not the best way to gauge the potential detection. He
told BBC News: “We’re excited about it... statistically, formally, it’s a very high
probability. But do we really trust the statistics? That’s something unquantifiable.
Until we get the measurements from Hubble, it may as well be 50–50 in my mind.”3

Today’s neural networks for image classification also have trouble reasoning about uncertainty,
as this adversarial panda illustrates:4

panda,
57.7%
confidence

+ 0.07×

nematode,
8.2%
confidence

=

gibbon,
99.3%
confidence

The main goal of this course is to learn how to express uncertainty in equations and
computer programs, so that ‘what you know in your mind’ and ‘what your probability com-
putations say’ support each other.

1https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
2https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-

antitrust-rules-worlds-most-valuable-resource
3http://www.bbc.co.uk/news/science-environment-40741545
4I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial Examples”. In:

ArXiv e-prints (Dec. 2014). arXiv: 1412.6572 [stat.ML].



2 0.2 ‘Field of study’: scientific modeling

0.2. ‘Field of study’: scienƟfic modeling
Given a crime and policing dataset5, here are some questions that spring to mind:

1. What is the typical crime rate in each neighbourhood?
Keywords: description, estimation.

2. How many police officers should we allocate to each neighbourhood this week?
Keywords: prediction accuracy, working system.

3. Do our policing strategies exacerbate racial tension?
Keywords: science, hypothesis, policy, counterfactual.

You’ll sometimes see machine learning used to mean “an operational engineering disci-
pline, for designing algorithms that predict outputs when fed with inputs, and are evaluated
according to the accuracy of their predictions”. This is the spirit, for example, of competi-
tions at kaggle.com, and it has led to some remarkably clever algorithms. It also leads to
offensive mistakes:

Google came under fire this week after its new Photos app categorized photos in
one of the most racist ways possible. On June 28th [2015], computer programmer
Jacky Alciné found that the feature kept tagging pictures of him and his girlfriend
as “gorillas.” He tweeted at Google asking what kind of sample images the company
had used that would allow such a terrible mistake to happen.

Google’s chief social architect Yonatan Zunger responded quickly, apologizing for
the feature.6

A machine learning system isn’t value neutral, it’s a reflection of the choices that
went into the training dataset. Data investigation is a required skill for responsible machine
learning. Conversely, whenever you analyse data, the tools you use to test your hypotheses
are estimation and prediction. So ‘data science’ and ‘machine learning’ are complementary
and intertwined.

This course is about data science, i.e. about building models and hypotheses and
understanding, using data. It’s not an introduction to the machine learning toolbox. The
range of algorithms out there is exciting and growing rapidly. There are courses in Part II
and III that will introduce you to some of them, and there are others that you will pick up in
your own reading. The goal of this course is to give you practice at asking the right questions
and finding the right tools, so that when you read about a new algorithm you can quickly
pick it up and decide where it is and isn’t appropriate.

What is data science modeling?

All models are wrong but some are useful [...] there is no need to ask the question
“Is the model true?”. If “truth” is to be the “whole truth” the answer must be
“No”. The only question of interest is “Is the model illuminating and useful?”.7

Since no model is to be believed in, no optimization for a single model can offer
more than distant guidance. What is needed, and is never more than approximately
at hand, is guidance about what to do in a sequence of ever more realistic situations.
The analyst of data is lucky if he has some insight into a few terms of this sequence,
particularly those not yet mathematized. [...] The main tasks of pictures are then:
to reveal the unexpected, to make the complex easier to perceive. Either may
be effective for that which is important above all: suggesting the next step in
analysis, or offering the next insight. In doing either of these there is much room
for mathematics and novelty.8

5e.g. https://data.police.uk/data/
6https://www.theverge.com/2015/7/1/8880363/google-apologizes-photos-app-tags-two-black-

people-gorillas
7G. E. P. Box. “Robustness in the Strategy of Scientific Model Building”. In: Robustness in Statistics.

Vol. 1. May 1979, p. 40. url: http://www.dtic.mil/docs/citations/ADA070213.
8John W Tukey. “Mathematics and the picturing of data”. In: Proceedings of the international congress

of mathematicians. Vol. 2. 1975, pp. 523–531. url: http://www.mathunion.org/ICM/ICM1974.2/Main/
icm1974.2.0523.0532.ocr.pdf.



0.3 The foundations 3

You’ve got to have models in your head. And you’ve got to array your experience—
both vicarious and direct—on this latticework of models. You may have noticed
students who just try to remember and pound back what is remembered. Well,
they fail in school and in life. You’ve got to hang experience on a latticework of
models in your head.
What are the models? Well, the first rule is that you’ve got to have multiple
models— because if you just have one or two that you’re using, the nature of
human psychology is such that you’ll torture reality so that it fits your models, or
at least you’ll think it does.9

0.3. The foundaƟons
The foundations of data science are probability, computing, and statistics.

You can learn enough probability theory in a term, though it takes practice practice
practice. You’ll pick up the relevant computing skills over the course of your degree: you
need to be able to think algorithmically and write fast code, and to understand databases
and distributed systems for big data. You can pick up some statistics ideas in a term, but
to really understand what it means to learn from data you will need a lifetime of experience,
including either a stint in a startup or a degree in philosophy.

Warren Buffet’s business partner says in colourful language how important it is to get
practice at working with probability:

If you don’t get this elementary, but mildly unnatural, mathematics of elementary
probability into your repertoire, then you go through a long life like a one-legged
man in an ass kicking contest. You’re giving a huge advantage to everybody else.
One of the advantages of a fellow like Buffett, whom I’ve worked with all these
years, is that he automatically thinks in terms of decision trees and the elementary
math of permutations and combinations.10

This course assumes you know the basic rules for manipulating probability, such as
Bayes’s rule. We’ll use probability for modelling, and we’ll ask what we can learn from data
via our models. Here’s a taster, the naïve Bayes classifier. Suppose we have the data

Emails labeled spam: “buy this viagra”, “cheap online pharma”, “cheap viagra today”.
Emails labeled genuine: “will you buy the present or will I”, “I will buy it online today”.
Test email 1: “buy viagra today”.
Test email 2: “buy viagra as a present”.

Here’s a simple model to start with: Each word in an email is chosen independently, with a
probability that depends on the label of the email. In mathematical notation, let θw be the
probability of word w in spam emails, and ϕw be the probability in genuine emails, and let

P(words w1w2 . . . wn|spam) =
∏
i

θwi ,

P(words w1w2 . . . wn|genuine) =
∏
i

ϕwi .

Based on the labeled data, the obvious parameter estimates are

w bu
y

thi
s

via
gra

che
ap

on
lin
e

ph
arm

a

tod
ay

wil
l

you the pre
sen
t

or I it
θw 1/9 1/9 2/9 2/9 1/9 1/9 1/9 0 0 0 0 0 0 0
ϕw 2/14 0 0 0 1/14 0 1/14 3/14 1/14 1/14 1/14 1/14 2/14 1/14

According to Bayes’s rule,

P(spam|words) = P(words|spam)P(spam)
P(words|spam)P(spam) + P(words|genuine)P(genuine)

9Charles Munger. A lesson on elementary, worldly wisdom as it relates to investment management
& business. Speech given at USC Business School. 1994. url: http : / / www . safalniveshak . com / wp -
content/uploads/2012/08/Lesson-on-Elementary-Worldly-Wisdom-Charlie-Munger.pdf.

10Ibid.



4 0.3 The foundations

where P(spam) and P(genuine) are prior beliefs about the label; prior beliefs might be chosen
based on the anticipated statistics of the test document collection, e.g. 50% and 50%. When
we evaluate the formula on the test documents,

P(spam|test email 1) = 1

P(spam|test email 2) = divide by zero error.

What does the divide by zero error mean? The simple naïve Bayes model might be inaccurate
but it’s not impossible, so something must have gone wrong with the way be applied it to
the data. The statistics component of this course will give you practice at debugging this
sort of ‘inference bug’.



5

1. ProbabilisƟc models

Goals. Refresh your memory of IA Maths for NST, where you were taught
some basic probability, and practice on some harder questions. Learn about
the four major types of probabilistic model, through examples.

ApplicaƟon. Suppose we wanted to write an app to detect if the user is cycling, running, or
driving, and which records or assists as appropriate. The GPS readings might look something
like this (showing one sample per second).

In [39]:

In [ ]:

+
−

Leaflet (http://leafletjs.com)

map = folium.Map(location=wps[270].latlon, zoom_start=18, tiles='cartodbpositron')
folium.PolyLine([wp.latlon for wp in wps2], color='#DC2348', opacity=.4).add_to(map)
for wp in wps2[180:300]:
    folium.CircleMarker(location=wp.latlon, color='crimson', fill=True, radius=1.5).
display(map)

GPS readings are noisy, so the user’s exact location is unknown, but it probably doesn’t jerk
about as wildly as the GPS readings do. The user is probably cycling given the speed, which
suggests how smooth the trajectory is likely to be. If we had a large dataset of traces, we
should be able to learn typical GPS noisiness, as well as typical statistics about speed and
smoothness for different modes of transport.

We often face these generic issues in data science applications:

• observations are noisy;
• there is hidden state (true position and transport mode) that we’d like to reason about;
• it’s a dynamical system we’re observing, and if we know how it typically evolves then

this tells us something about the hidden state;
• we want to learn system parameters from a large dataset.

In this section we’ll look at four common types of model, which showcase these issues. The
actual GPS smoothing problem is too involved for lectures, so we’ll look at simpler idealized
models.



6 1.1 Random samples

1.1. Random samples
ApplicaƟon. I’ve developed a new load-balancing algorithm for my web server. I want to
test my algorithm, by means of simulation. My simulator needs a random number generator
(RNG) to generate file sizes, request times etc. The performance of my load balancer will
surely depend on the random number generator I use. How should I program this random
number generator?

We use RNGs in situations like this because the real world is too complicated to model in a
Newtonian cause-and-effect way. We use random numbers to say “There is variability, and
I can quantify the degree of variability, but I’m not going to look in excruciating detail for
causes for every little variation.” It’s up to the modeler to draw the line between ‘causes of
variation that it’s worth including explicitly’ and ‘residual variation that we’ll label noise’.

Typically we take real-world measurements, we look at the data, and we pick a RNG
that produces output consistent with the data. Many standard RNGs come with tuneable
parameters. Typically we look at the data to estimate what values to use for the tuning
parameters (and, in this application, to figure out how the parameters vary with time of day,
request type, etc.)

Working definiƟons. A random variable is a function that can give different answers, e.g. a
function that calls a random number routine. We say it takes values in S to mean that the
return value of the function is in the set S. A random sample is a random variable that
returns a list, in which the individual elements are chosen independently. A dataset is a
collection of numbers.

Example. Here is a random variable:
1 def rgeom(p) :
2 x = 1
3 while random.random() > p:
4 x = x + 1
5 return x
Let X be the output of rgeom(1/3). To find the distribution of X, we can use simple
probability calculation. To get X = 1 we need the random.random()>p test to fail on the
first pass, which has probability p. To get X = 2 we need the test to succeed on the first pass
then fail on the second, which has probability (1−p)p. Generalizing, P(X = k) = (1−p)k−1p.

Example. Let X be the set of birthdays of n people, assuming all days are equally likely, that
people are independent, and ignoring leap years. Then X is a random variable, and so is |X|.
As you saw in IA Maths for NST,

P(all n have different birthdays) = P(|X| = n) = 1× 364

365
× · · · × 365− n+ 1

365
.

Example. What’s the chance that two or more people present in the first lecture for this course
share a birthday?

This is badly put, since it’s describing a dataset not a random variable. Either there is
a shared birthday, or there isn’t, so the probability is either 1 or 0. So what on earth did the
example on page 1 mean by “panda, 57.7% confidence”? This is a hard question, and we’ll
come back to it in Section 3.

When we write for example “Let X be rexp(3)”, remember that X doesn’t have any
particular value. It’s a stand-in for all the possible values that the random variable might
produce, weighted by their probabilities.

* * *

For a random variable that takes parameters, such as rgeom(p), the obvious question
is “How should I pick the value of the parameter so that the output of a random variable
matches my dataset?”. A very simple (and perfectly good) answer is the eyeball method:
plot the histogram of your dataset, and superimpose the histogram of a random sample from
the RNG, and tune the parameter until they look close.



1.1 Random samples 7

Example. I collected 31,078 lines from the request log of a web server, and extracted the size
in bytes of the contents. The sizes vary hugely, from 1 byte to 8,944,270 bytes, so to see
them on a sensible scale I computed log2(size) and rounded down. I then generated 31,078
random variables using rgeom(p) for different values of p. This plot shows the results, with
one panel for each value of p I tried.

0.04 0.089 0.15

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
0

2500

5000

7500

lg size

co
un

t

It looks like rgeom(p) is a bad choice for this dataset, for the three values of p we tried.
This prompts two questions: Is there a systematic way to pick the best p? and Is there a
systematic way to pick the best RNG? The answer to the former is Yes. The response to the
latter is That’s a fundamentally wrong-headed question, as we’ll discover in Section 2.

DefiniƟons. A random variable is discrete if it takes values in some countable space. The
density function for a discrete random variable X is f(x) = P(X = x). If the density function
depends on some parameter θ, then the likelihood of a sample x1, . . . , xn is

lik(θ|x1, . . . , xn) = f(x1)f(x2) · · · f(xn).

Procedure. A sensible way to estimate an unknown parameter, given a dataset, is to find
the value of the parameter that maximizes the likelihood. This is called maximum likelihood
estimation.

Example. Suppose I have a dataset x1, . . . , xn, all integers, and my model is the rgeom(p)
random variable. The likelihood is

lik(p|x1, . . . , xn) = (1− p)x1−1p× · · · × (1− p)xn−1p

= (1− p)s−npn where s = x1 + · · ·+ xn.

It’s usually easier to maximize log lik() rather than lik(), because talking logs turns products
into sums. Thus

log lik(p|x1, . . . , xn) = (s− n) log(1− p) + n log p,
d

dp
log lik(p|x1, . . . , xn) = −s− n

1− p
+

n

p
.

To maximize this, we solve d/dp = 0, giving the maximum likelihood estimator p̂ = n/s. For
the dataset of web server content sizes shown above, it evaluates to p̂ = 0.089.

* * *

Maximum likelihood estimation is nearly universal. It’s simple to explain. It’s easy to
compute (or at least no harder than any other method). It’s got some nice properties:

• It’s intuitively plausible. For simple problems like “Toss n biased coins, get x heads,
estimate the the probability of heads” it gives the sensible answer x/n.

• If the RNG truly is the correct RNG for the dataset, then one can prove that as the size
of the dataset increases, the maximum likelihood estimator is guaranteed to approach
the true value of the parameter. We’ll learn more about the properties of big datasets
in Section 2.

But there’s nothing necessarily ‘true’ about maximum likelihood estimation. You’ll learn
from exercises on the example sheet that the maximum likelihood estimator can be biased,
and that it performs poorly when there are lots of parameters to estimate.



8 1.1 Random samples

Pay close attention to the style of reasoning behind the two bullet points. “Here’s a
method, M . How good is M? Let’s take an RNG, consider a random sample generated from
that RNG, and see how close M gets to the truth.” This is a good sanity check, and if the
method didn’t pass this test then we wouldn’t want to use it. But, as the quotes on page 2
remind us, any model we use is wrong. What we need to ask is “How robust is this method,
i.e. does it give a useful answer when my model is wrong?”. This is much harder to answer.
As you gain experience of data science, you will develop the skill to look at a method and
quickly see what sorts of modeling errors will trick it, and then measure by how much.



1.2 Markov models 9

1.2. Markov models
ApplicaƟon. Bitcoin11 is a decentralized electronic cash system, introduced by Satoshi Nakamoto
in 2008. It has been a wild success, arguably because of the ingenious way it balances incen-
tives12. An important part, and a focus of Nakamoto’s original paper, was how to solve the
‘double spend’ problem in a decentralized system. To understand what this problem is, and
how Bitcoin solves it, let’s start with some background.

n0 chosen such that hash(0, B0.records, n0) < threshold,
h0 = hash(0, B0.records),
n1 chosen such that hash(h0, B1.records, n1) < threshold,
h1 = hash(h0, B1.records),
...

Bitcoin is a system is for storing and verify transaction records, which are depicted as stars
in the diagram. A transaction record might be e.g. Tx1 =“Alice transfers coin 314 to Bob”,
cryptographically signed. Transaction records are assembled into blocks B0, B1, . . . , and each
block additionally includes two values: the hash of the previous block, and a nonce which
solves a computationally demanding inequality.

In the simplest world, there might be a central bank which publishes blocks, say one
block every 10 minutes. If Alice wants to pay Bob, she asks the bank to record Tx1, the
bank checks that previous blocks confirm that Alice owns the coin, Bob waits until the bank
publishes a new block containg Tx1, and then he posts the widget to Alice. The nonces are
unnecessary, in a centralized system.

Bitcoin is a decentralized system with roughly 9750 nodes13, each of which keeps a
copy of the entire blockchain. When Alice wants to record the transaction, she sends it to
one of these nodes, which broadcasts it to the rest of the network; it takes 1.5 seconds to
reach 50% of the nodes. Other machines work to mine blocks, i.e. to find a nonce with a
suitable hash. The time between blocks depends on the threshold; Nakamoto specified an
algorithm to dynamically adapt the threshold so that a new block is mined every 10 minutes
on average, regardless of the number of miners. Roughly 3.9 × 1021 hashes must be tested
to find a block, and each block contains around 2000 transactions. When a block has been
mined, the nodes broadcast it to each other, and it takes roughly 5 seconds to reach 50% of
the nodes.

11Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. url: https://bitcoin.org/
bitcoin.pdf.

12Simon Barber et al. “Bitter to Better : How to Make Bitcoin a Better Currency”. In: Financial
Cryptography—FC 2012. Vol. 7397. Lecture Notes in Computer Science. 2012, pp. 399–414. url: http:
//www.cs.stanford.edu/~xb/fc12/.

13Bitcoin statistics are from September 2017. Current statistics can be found at bitnodes.21.co/nodes/
live-map, bitcoinstats.com/network/propagation, data.bitcoinity.org/bitcoin/block_time, statoshi.
info/dashboard/db/mining, www.bitcoinmining.com/bitcoin-mining-hardware, blockchain.info/charts/
n-transactions-per-block.



10 1.2 Markov models

What we’ve described so far allows money to be double-spent. Suppose Alice broadcasts
Tx1 “Alice transfers coin 314 to Bob”, Bob sees this, and sends Alice the widget. Suppose
Alice also creates a new transaction Tx2 “Alice transfers coin 314 to Alicia” (her alter-ego),
mines a block containing Tx2, and broadcasts it. Now Alice has the widget, and if Alice’s
block gets spread widely then everyone accepts that Alicia owns the money.

The Bitcoin strategy to prevent double-spend attacks is for nodes to use the rule “If
there are two possible chains, discard the shorter”, and for Bob to use the rule “Wait for 6
blocks (1 containing Tx1, then 5 more chained after it)” before sending Alice the widget. To
double-spend, Alice would need to create an alternative history with Tx2 rather than Tx1,
and get it accepted by the rest of the nodes. The chance of a successful double-spend attack
should be small, assuming Alice doesn’t own too much of the worldwide block mining power.
What is the chance of this? And why did Nakamoto come up with “wait for 6 blocks”?

Nakamoto’s calculation was as follows. Assume that Alice controls a fraction p of the
worldwide block mining power. Let At be the number of blocks that Alice has mined at time
t after her attempted double-spend, and let Nt be the number of blocks mined by everyone
else, so they start14 at A0 = N0 = 0. At any point in time, the probability that the next
block comes from Alice is p, and the probability it comes from someone else is 1 − p. We
want to calculate the probability that, at any time after reach Nt = 6, we later hit As > Ns.

The starting point is to split P(Alice double-spends) using conditional probability, con-
ditioning on how it might have happened.

P

(Alice
double-
spends

)
=
∑
a

P

(Alice
double-
spends

∣∣∣∣∣ At = a when
Bob delivers

)
P
(At = a when
Bob delivers

)
.

For the first term, with a flash of insight, we spot that all that matters is the gap Nt − At.
At the instant Bob delivers, this is equal to 6− a, and thereafter it may go up or down, and
if it ever hits −1 then Alice double-spends. Let

πx = P
(eventually hit
Ns −As = −1

∣∣∣ currently at
Nt −At = x

)
and split this using conditional probability, conditioning on who mines the next block:

πx =
∑

m∈{others,Alice}

P
(eventually hit
Ns −As = −1

∣∣∣ currently at Nt −At = x,
and next block mined by m

)
× P

(next block
mined by m

∣∣∣ currentlyat Nt −At = x

)
= P

(eventually hit
Ns −As = −1

∣∣∣ now at
Nt −At = x+ 1

)
(1− p)

+ P
(eventually hit
Ns −As = −1

∣∣∣ now at
Nt −At = x− 1

)
p (1)

= πx+1(1− p) + πx−1p

14What if Alice prepares some malicious blocks in advance, and only launches her attack when she has
enough blocks stored? This is a problem, called the selfish miner attack. See for example Yonatan Sompolin-
sky and Aviv Zohar. “Bitcoin’s Security Model Revisited”. In: CoRR (2016). url: http://arxiv.org/abs/
1605.09193.



1.2 Markov models 11

except for x ≤ −1 where πx = 1. This is now a pure maths recurrence equation, and we can
solve it and discover

πx =

{(
p

1−p

)x+1 if x ≥ 0,

1 if x ≤ −1.

(You should check that this does indeed solve the recurrence equation. We’ll see many
more calculations along these lines in Section 5, and we’ll discuss what happens when the
recurrence equation has more than one solution.)

We still have to work out P(At = a when Bob delivers). Call it ξa. By simply counting
up all the ways that we might reach Nt = 6, along the lines of Example 1, we find

ξ0 = (1− p)6

ξ1 = p(1− p)2 + (1− p)p(1− p)5 + · · ·+ (1− p)5p(1− p) =

(
6

1

)
p(1− p)6

ξa =

(
a+ 5

a

)
pa(1− p)6.

Putting everything together,

P

(Alice
double-
spends

)
=

∑
a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

( p

1− p

)6−a+1
+
∑
a≥7

(
a+ 5

a

)
pa(1− p)6

=
∑

a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

( p

1− p

)6−a+1
+

(
1−

∑
a∈{0,...,6}

(
a+ 5

a

)
pa(1− p)6

)
.

Here are some numbers, showing the probability that Alice successfully double-spends, de-
pending on the proportion p that of block mining power that she controls, and the number
of confirmations that Bob waits for. This is the data that Nakamoto used to choose the rule
“wait for 6 confirmations”.

* * *

In this problem, we studied a dynamical process (Nt, At), t ≥ 0. There were several
key steps in how we analysed it:

CondiƟoning. To find P(event), we conditioned on how the event happened. We chose the
conditioning strategically. We applied it in two ways: we conditioned on At at the instant that
Bob delivers the widget, and we conditioned on who mines the next block. This conditioning
is an application of the law of total probability, which states

P(A) =
∑
i

P(A|Bi)P(Bi)

where A is an event and B1, . . . , Bn are mutually exclusive events that cover all possible ways
that A can occur.

Conditioning might remind you of dynamic programming, the algorithmic strategy of
decomposing a problem into smaller sub-problems. There is a substantial difference, though.
We came up with the equation

πx = πx+1(1− p) + πx−1p



12 1.2 Markov models

which does not lend itself to a recursive algorithm because there is no base case. In dynamic
programming, on the other hand, the goal is to turn the problem into a recursive algorithm.
In Section 5 we’ll look at computational methods for solving equations like this.

Memorylessness. The most important step in the calculation was (1). It expresses the idea
“What happens in the future depends only on where you are now, not on how you got here.”
Why is this true for bitcoin? The way the bitcoin hash calculation works, finding a nonce is
like winning the lottery: if you haven’t won one so far, it doesn’t mean you’re more likely
to win next time. If we’re at state N − A = x + 1, it’s immaterial whether we reached
there from N − A = x or from N − A = x + 2, the future looks exactly the same either
way. This is called memorylessness, or alternatively the Markov property after the Russian
mathematician Andrey Markov, who invented the theory of memoryless processes, which we
will study in much more detail in Section 5.

There are very many non-Markov processes, but they’re often much harder to analyse.
Even in the bitcoin problem, we can question whether it truly is memoryless. If for example
the number of mining machines was slowly varying, then the fact “N − A used to be x + 2
before it became x + 1” gives a slight hint that Alice might have a slightly higher number
of miners than she started with, which would impact our estimate of what happens in the
future. To make the problem memoryless, we assumed that Alice controls precisely p of the
worldwide mining power, and that p doesn’t change.

Embedded chain. The process (Nt, At) evolves in continuous time, but all we chose to look
at is the instants where it jumps. This is called finding an embedded Markov chain. The
word chain here means “discrete sequence of events”.



1.3 Descriptive models 13

1.3. DescripƟve models
A group of four friends, A, B, C, and D, are deciding how to vote in the Brexit referendum. There
are 16 possible outcomes. Based on survey statistics for similar groups, the estimated chance of
each of the 16 possible outcomes for (A,B,C,D) is

(0, 0, 0, 0) 17.109%
(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0) 6.095%
(0, 0, 1, 1), (0, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 1) 7.821%
(0, 1, 0, 1), (1, 0, 1, 0) 0.295%
(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1) 3.069%
(1, 1, 1, 1) 14.361%

(2)

where 0 means remain and 1 means exit.

The voter dataset is called multivariate, meaning that each item is a vector, in this
case of length four. It’s simple to simulate a random outcome in Python: How would you

implement
random.choices() if
your language
provides only simple
uniform random
numbers in [0, 1]?
There is an obvious
method, and a
clever trick called
the Alias Method
that you’ll explore
in the example
sheet.

1 def rvote () :
2 outcomes = [(0 ,0 ,0 ,0) , (0 ,0 ,0 ,1) , . . . ]
3 probs = [0.17109 , 0.060905, . . . ]
4 return random. choices (outcomes , weights=probs)
There are many other ways we could implement the simulator. For example, simply adding
up the probabilities we get

P(A = 0) = 54.4%
P(B = 0 |A = 0) = 68.2%,

P(B = 0 |A = 1) = 37.8%
P(C = 0 |A = 0, B = 0) = 62.5%,

P(C = 0 |A = 0, B = 1) = 37.0%, . . .

which suggests the code
1 def rvote2 () :
2 pA = 0.544
3 A = random. choices ([0 ,1] , weights=[pA, 1−pA])
4 pB = {0: 0.682, 1: 0.378}[A]
5 B = random. choices ([0 ,1] , weights=[pB, 1−pB])
6 pC = {(0 ,0): 0.625, (0 ,1): 0.370, . . . } [ (A,B)]
7 C = random. choices ([0 ,1] , weights=[pC, 1−pC])
8 . . .
9 return (A, B, C, D)
These two random simulators are equivalent—they generate exactly the same distribution of
outcomes.

When we’re presented with a multivariate dataset, we typically start by investigating
how one variable depends on the others, or on some summary of the others. This is called
the marginal distribution of the variable we’re investigating. For example, pick any one of
the four friends, and call their vote Y , and let X be the total vote of the other three. Then

P(Y = 0 |X = x) =


73.7%, if x = 0

53.4%, if x = 1

63.4%, if x = 2

17.6%, if x = 3.

(3)

We might write the model this way if we want to predict the behaviour of an individual
voter. The terms that we’re conditioning on are called features, and it’s an art to find useful
features. We’ll discuss this further in Section 4.

DefiniƟons. A descriptive or observational model specifies the distribution of the data, with-
out specifying the mechanism by which it was generated. A discriminative model is a type of



14 1.3 Descriptive models

descriptive model, written as the marginal distribution of some variable of interest conditional
on features.

The ‘outrage media’ generates catchy headlines when it muddles descriptive models and
causal mechanisms. Here’s a headline15 describing a study that was purely observational:

In Section 1.4 we’ll look harder at causal versus descriptive models.

* * *

A group of four friends are deciding how to vote in the Brexit referendum. For each of them, the
probability of voting Remain given the number of friends n who vote Leave is 73.7% (if n = 0),
or 53.4% (if n = 1), or 63.4% (if n = 2), or 17.6% (if n = 3).

Sometimes, we’re only told marginal distributions, as in this second dataset. This invites
questions:

• Is there a descriptive model that’s consistent with these marginals, i.e. is it possible
to define a random variable (A,B,C,D) that yields these marginals? In this case, yes,
because the marginal probabilities are exactly what’s specified in equation (3), which
we know were derived from the full descriptive model in equation (2).

• Is there always a consistent descriptive model? No. Suppose we wrote down a con-
trarian model, P(A = a|B = b) = 1a=b and P(B = b|A = a) = 1a̸=b. There’s no
distribution for (A,B) that has these two marginals.The notation 1Q is

shorthand for “1 if
Q is true, 0 if Q is
false”.

• But isn’t that contrarian case pathological? Yes, it is. We can always just define the
probability of a particular outcome to be the product or factor distribution, i.e.

P(A = a,B = b, C = c,D = d)

= κ P(A = a | . . . )P(B = b | . . . )P(C = c | . . . )P(D = d | . . . )

and pick κ so that the probabilities sum to 1. In the pathological case, all the proba-
bilities are zero so it’s impossible to pick κ. In all other cases, we can.

• Is there a unique descriptive model that’s consistent with a given set of marginal distri-
butions? No. In this case, the original descriptive model (2) turns out to be different
to the product distribution.

You often see factor distributions drawn as undirected graphs, with a node for each
variable and edges to indicate which variables depend on which other variables. They are
also called Markov random fields, where the word ‘Markov’ here means ‘depends only on
neighbours’. The original voter distribution in equation (2) was actually produced from a
factor distribution, with some extra hidden variables corresponding to pairs of friends.

15http://www.independent.co.uk/news/uk/politics/brexit-education-higher-university-study-
university-leave-eu-remain-voters-educated-a7881441.html



1.3 Descriptive models 15

Graph behind the
first voter model:
A B

D C

Graph of the
second voter model:
A B

D C

Factor distributions are popular with physicists, e.g. the Ising model for magnetism.
They can also be used in computer graphics, for synthesizing texture. Take a source image
with a sample of the texture, pick a window size, e.g. 11×11 pixels, and work out the marginal
distribution of the center pixel conditional on the other 112 − 1 pixels. Consider the entire
area we want to texturize to be a multivariate random variable, with the factor distribution,
and generate a single sample of this random variable. (In Section 5 we’ll learn how to generate
samples from factor distributions, using Markov chains.) Here is an example16.

16Taken from lecture notes by Steven Seitz at the University of Washington, https://courses.cs.
washington.edu/courses/csep576/05wi/lectures/texture.pdf



16 1.4 Causal models

1.4. Causal models
The goal of data science is often to answer policy questions.

Should we cut tuition fees? What does the data tell us will happen?

This is a hypothetical question, about a situation that hasn’t yet been observed. Such
questions may be dressed up to look like descriptive questions

In places or times where tuition fees were cut, what happened?

but there’s an implicit claim

If we were to cut tuition fees now, the same would surely happen.

Sometimes it’s expressed as a counterfactual question:

If we had cut tuition fees, what state would we be in now?

DefiniƟon. A model is called causal or generative if the steps in the code represent mech-
anisms, such that if we intervene and alter some value or mechanism then the rest of the
mechanism still works as before. It’s convenient to draw causal models as directed acyclic
graphs, where the edges show which variables are used to generate which other variables. A
variable is called latent if it is not observed.

Descriptive models don’t tell you the order in which variables are generated. In Sec-
tion 1.3, for example, we saw two different mechanisms rvote() and rvote2() for simulating
votes, which both correspond to exactly the same descriptive model. But if we intervene and
force D to vote remain (by adding a line of code), then the two mechanisms will produce
different outcome distributions. So, if all we know are descriptive summaries, it’s generally
impossible to answer causal questions.

A (fictional) drug is taken by some members of the population, and it leads to better survival
outcomes. A zealous health minister wants to add the drug to drinking water. Before this is
approved, a heroic scientist runs a controlled trial, which show the drug actually leads to worse
outcomes.

population trial
drug clean drug clean

P(death) .002 .028 .016 .014
P(survival) .998 .972 .984 .986

This numbers are taken from Tian and Pearl17, who put them instead in a much more
interesting legal counterfactual context:

A lawsuit is led against the manufacturer of drug x, charging that the drug is
likely to have caused the death of Mr A, who took the drug to relieve symptom S
associated with disease D.
The manufacturer claims that experimental data on patients with symptom S
show conclusively that drug x may cause only minor increase in death rates. The
plaintiff argues, however, that the experimental study is of little relevance to this
case, because it represents the effect of the drug on all patients, not on patients
like Mr A who actually died while using drug x. Moreover, argues the plaintiff,
Mr A is unique in that he used the drug on his own volition, unlike subjects in
the experimental study who took the drug to comply with experimental protocols.
To support this argument, the plaintiff furnishes non experimental data indicating
that most patients who chose drug x would have been alive if it were not for
the drug. The manufacturer counter-argues by stating that: (1) counterfactual
speculations regarding whether patients would or would not have died are purely
metaphysical and should be avoided, and (2) nonexperimental data should be

17Jin Tian and Judea Pearl. “Probabilities of Causation: Bounds and Identification”. In: Proc. of the 16th
Conference on Uncertainty in Artificial Intelligence. 2000. url: https://arxiv.org/ftp/arxiv/papers/
1301/1301.3898.pdf.



1.4 Causal models 17

dismissed a priori, on the ground that such data may be highly biased; for example,
incurable terminal patients might be more inclined to use drug x if it provides
them greater symptomatic relief. The court must now decide, based on both the
experimental and non-experimental studies, what the probability is that drug x
was in fact the cause of Mr A’s death.

Let’s invent a probabilistic model, that can generate outcomes like those in the table.
We’ll imagine there are two types of patient, regular and terminal. Greek letters indicate
parameters of the model.

1 def population () :
2 person = random. choices ( [ ’ regular ’ , ’ terminal ’ ] , weights=[π ,1− π ] )
3 p_drug = { ’ regular ’ : θ , ’ terminal ’ : ϕ}[person ]
4 treat = random. choices ( [ ’drug ’ , ’ clean ’ ] , weights=[p_drug, 1−p_drug])
5 p_death = ξperson, treat
6 return random. choices ( [ ’ die ’ , ’ survive ’ ] , weights=[p_death, 1−p_death])
7
8 def t r i a l ( treat ) :
9 person = random. choices ( [ ’ regular ’ , ’ terminal ’ ] , weights=[π ,1− π ] )
10 p_death = ξperson, treat
11 return random. choices ( [ ’ die ’ , ’ survive ’ ] , weights=[p_death, 1−p_death])

Drawn as directed acyclic graphs, with white boxes for latent random variables and shaded
boxes for observed random variables,

Population model:

person

treat

outcome

Trial model:
person

treat

outcome

If we simply count up the probability of each outcome, we get the formulae in the table
below. In the population table all four probabilities sum to 1 (since the table describes
the characteristics of a random person), whereas in the trial table each column sums to 1
(since the table describes the outcome for each type of patient in the trial). Parameters that
correspond to the percentages given earlier are π = 0.1183, θ = 0, ϕ = 0.125, ξregular,drug = 0,
ξregular,clean = 0.1184, ξterminal,drug = 0.0181, ξterminal,clean = 0.

population: drug clean
P(death) πθξr,d + (1− π)ϕξt,d π(1− θ)ξr,c + (1− π)(1− ϕ)ξt,c
P(survival) πθ(1− ξr,d) + (1− π)ϕ(1− ξt,d) π(1− θ)(1− ξr,c) + (1− π)(1− ϕ)(1− ξt,c)

trial: drug clean
P(death) πξr,d + (1− π)ξr,d πξr,c + (1− π)ξr,c
P(survival) 1 - πξr,d + (1− π)ξr,d 1 - πξr,c + (1− π)ξr,c

The legal counterfactual question is this: We know Mr A took the drug and died; given this,
what’s the probability he would have died if he hadn’t taken the drug? Let’s use Bayes’s rule
to first work out the probability that Mr A is regular or terminal given these facts.

P(regular | drug, dead)

=
P(drug, dead | regular)P(regular)

P(drug, dead | regular)P(regular) + P(drug, dead | terminal)P(terminal)

and this is 0 because regular people do not die on the drug, ξregular,drug = 0. Therefore Mr
A is terminal. But ξterminal,clean = 0, i.e. terminal people do not die when they’re not on the
drug, therefore Mr A’s death was caused by the drug.



18 1.4 Causal models

We have worked through this calculation with an explicit and invented probabilistic
model, as expressed in the code and the parameter values. The remarkable contribution of
Tian and Pearl was to show that the same conclusion must hold whatever the model.

* * *

You sometimes come across the glib remark ‘correlation does not imply causation’, but causal-
ity theory goes far beyond this. It is a relatively new area, still barely developed, and still
contentious. Machine learning algorithms are getting very good at descriptive and discrimi-
native models, but I think it will be 15 years or more before AIs can manage general causal
reasoning. Even today, according to Pearl18, many human statisticians still find it perplex-
ing that we can draw counterfactual conclusions from observational data. Here’s a last word
from the inimitable Randall Munroe.19

* * *

What is modelling for?

• Sometimes we put forwards a model, even though we don’t really believe it’s accurate,
because it lets us make useful inferences about hidden variables. Any reasonably sensi-
ble model for human motion should let us infer walking / cycling / driving from GPS
traces, and probabilistic modeling is a convenient and interpretable tool that won’t
lead to crazy answers.

• Sometimes we have detailed observational data and just we want to find a reasonably
good and simple approximation, either for storage or speed reasons. Here we’re looking
for a reasonably good fit for the distribution, and we want to find useful features and
parameters.

• Sometimes we want to build a product that makes predictions, e.g. that classifies new
images. Probabilistic models are one way to build predictors, and they’re often useful
when we want to assess how well our product might perform on data of a type it hasn’t
seen before.

• Sometimes we’re interested in building a simulator of a system that we understand well.
It’s helpful to be familiar with a range of probability models, to be able to pull ‘off the
shelf’ whatever is appropriate and has good library support.

• Sometimes we want to answer policy questions, or to build our scientific understanding.
This, in my opinion, is the truest data science, and by far the most challenging.

18Judea Pearl. Causality: Models, Reasoning and Inference. 2nd ed. Cambridge University Press, 2009.
19https://xkcd.com/552/



1.5 Common random variables 19

1.5. Common random variables
It’s useful to have a range of common random variables at our fingertips.

DefiniƟon. A random variable X is discrete if it takes values in some countable space, such
as the integers. The density is f(x) = P(X = x). The density must be everywhere ≥ 0 and
must sum to 1.

DefiniƟon. A random variable X is continuous if it takes values in a continuous set, such as
the real numbers, or [0, 1]. A continuous random variable has a density function f(x) such
that

P(X ∈ A) =

∫
x∈A

f(x) dx for all sets A.

The density must be everywhere ≥ 0 and must integrate to 1.

VARIABLES ASSOCIATED WITH WAITING AND COUNTING

Geometric: If we’re playing a lottery, and each week the chance of winning is p, then our first
win happens on week X ∼ Geom(p). This random variable takes values in {1, 2, . . . }, and

P(X = r) = (1− p)r−1p, P(X ≥ r) = (1− p)r−1.

We came across it in Section 1.1. In Python, numpy.random.geometric(p).

ExponenƟal: The Exponential random variable is a continuous-time version of the Geometric.
It’s used to model the time until an event, for many natural processes: for example the time
until a lump of radioactive matter emits its next particle, or the time until a lightbulb blows,
or the time until the next web request arrives. If X ∼ Exp(λ) then it takes values in [0,∞),
and

f(x) = λe−λx, P(X ≥ x) = e−λx, EX =
1

λ
.

The parameter λ is called the rate. The chance of an event in a short interval of time [t, t+δ]
is

P(X ≤ t+ δ |X ≥ t) =
P(X ∈ [t, t+ δ])

P(X ≥ t)
=

∫ t+δ

t
λe−λx dx

e−λt
≈ δλ.

In Python, numpy.random.exponential(scale=1/λ).

Binomial: If we toss a biased coin n times, and each coin has chance p of heads, the total number
of heads is X ∼ Bin(n, p). This random variable takes values in {0, 1, . . . }, and

P(X = r) =

(
n

r

)
pr(1− p)r.

In Python, numpy.random.binomial(n,p). When n = 1, i.e. a single coin toss, it’s called a
Bernoulli random variable. There is a related random variable called the negative binomial,
which arose in Section 1.2 when we calculated P(At = a when Bob delivers).

MulƟnomial: If we have n individuals each of whom falls into one of k categories, and the
probability of falling into category i is pi, then the total number in each category is a
multivariate random variable X ∼ Multinom(n, p). We used it for counting outcomes in the
drug model in Section 1.4. It takes values in {0, 1, . . . , n}k, and

P(X = x) =
n!

x1!x2! · · ·xk!
px1
1 px2

2 · · · pxk

k .

In Python, numpy.random.multinomial(n,p). (The binomial distribution is the special case
when k = 2.)



20 1.5 Common random variables

Poisson: The random variable X ∼ Poisson(λ) takes values in {0, 1, . . . }, and

P(X = r) =
λre−λ

r!
.

In Python, numpy.random.poisson(λ). Suppose we’re counting the number of events in a fixed
interval of time, for example the number of buses passing a spot on the street, or the number
of web requests, or the number of particles emitted by a lump of radioactive matter. If the
time between events is Exp(λ), then the total number of events in time t is X ∼ Poisson(λt).

VARIABLES ASSOCIATED WITH SIZES

Normal / Gaussian: This distribution is a very popular choice for data analysis because it’s often
a good model for things that are the aggregate of many small pieces, for example height which
is the aggregate of many influences from genetics and the environment. It’s also easy to do
probability calculations with it. If X ∼ N(µ, σ2) then X is a continuous random variable
taking values in the entire real line, and

f(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 , EX = µ, VarX = σ2.

In Python, numpy.random.normal(loc=µ, scale=σ) (and watch out for σ versus σ2). If X ∼
N(µ, σ2) and Y ∼ N(ν, ρ2) and they are independent, then

• aX + b ∼ N(aµ+ b, a2σ2)

• (X − µ)/σ ∼ N(0, 1)

• X + Y ∼ N(mu+ ν, σ2 + ρ2).

There is also a multivariate version, called the multivariate normal.

Pareto and lognormal: Some natural phenomena, like sizes of forest fires, or insurance claims,
or Internet traffic volumes, or stock market crashes, have the characteristic that there are
events of wildly different sizes. This tends to cause problems for simulations and forecasting,
since the entire outcome can hinge on one ‘black swan’ event20. A common random variable
with this characteristic is the Pareto distribution, X ∼ Pareto(α), named after the Italian
economist Vilfredo Pareto who studied extreme wealth inequality. It is a continuous random
variable taking values in [1,∞), and

f(x) = αx−(α+1), P(X ≥ x) = x−α, EX =

{
∞ if α ≤ 1

α/(α− 1) otherwise.

For α < 2 it tends to produce many small values (‘mice’) and very occasional huge values
(‘elephants’). To illustrate, here are some samples drawn from three different distributions,
all with mean value 1.

X ∼ Exp(1),
EX = 1

X ∼ α−1
α Pareto(α)

with α = 1.1,
EX = 1

X ∼ α−1
α Pareto(α)

with α = 5,
EX = 1

The lognormal distribution X ∼ eN(µ,σ2) has similar characteristics to the Pareto but is
not quite as extreme. It was invented by the Cambridge senior wrangler and medic Donald
MacAlister.

20Nassim Nicholas Taleb. The Black Swan: The Impact of the Highly Improbable. 2nd ed. Random House,
2010.



1.5 Common random variables 21

Zipf: The random variable X ∼ Zipf(n, s) takes values in {1, 2, . . . , n} and

P(X = r) =
r−s

1 + 2−s + · · ·+ n−s
.

It is named after the American linguist Goerge Zipf, who used it to describe frequencies of
words in texts21. Take a large piece of text, and count the number of occurrences of each
word, and rank the words from most common to least common. Say that the most common
word has rank 1, the next most common has rank 2, and so on. Zipf observed that the
number of occurrences of the rth ranked word is roughly const× r−s where s ≈ 1 in English
texts. Another way of putting this: if we pick a word at random from the entire body of text,
then the rank of that word is Zipf(n, s), where n is the size of the vocabulary. The same
phenomenon happens with cities: if we take a person at random from the entire population,
and look at which city they come from, and rank cities by size, then the rank of that person’s
city is Zipf(n, s) where n is the number of cities and s is roughly 1.07.

There is a direct link between the Pareto(α) and Zipf(n, 1/α) distributions. First,
create a ‘pseudo-random’ sample of n city sizes, to match the Pareto(α) distribution. Make
the largest city have size x(1) such that x−α

(1) = 1/N , make the second-largest city have size x(2)

such that x−α
(2) = 2/N , etc. This is a deterministic equivalent of the Pareto(α) distribution,

in which P(X ≥ x) = x−α. Then, the city of rank r has size const × r−1/α, which fits with
Zipf(n, 1/α).

21See the IA course Machine Learning and Real-World Data



22 1.6 Independence and joint distributions

1.6. Independence and joint distribuƟons
The concept of independent random variables is fundamental in modeling. Informally it
means “knowing the value of one of them gives no information about the other.” We’ve used
the word several times so far, but we haven’t defined it.

DefiniƟon. Two random variables X and Y are independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A) P(Y ∈ B) for all A and B.

For discrete random variables it’s sufficient to check

P(X = x, Y = y) = P(X = x) P(Y = y) for all x and y,

and for continuous random variables with joint density function fX,Y (x, y), it’s sufficient to
check

fX,Y (x, y) = fX(x)fY (y) for all x and y.

We can also write the definition in terms of conditional probability:

P(X ∈ A | Y ∈ B) = P(X ∈ A) for all A and B such that P(Y ∈ B) > 0.

A collection of independent random variables drawn from the same distribution, such as we
investigated in Section 1.1, are said to be independent and identically distributed, abbreviated
IID.

Example. I throw a fair die. Let Z be the result. Let X = Z mod 2 and let Y = Z div 3, so
for example Z = 3 gives X = 1 and Y = 1. Are X and Y independent? The definition gives
a condition that has to be satisfied for all x and y. Let’s try some:

• Try x = 0, y = 0. For these, P(X = 0, Y = 0) = P(Z = 4) = 1/6, and P(X = 0) = 1/2
and P(Y = 0) = 1/3. So this pair passes the test.

• Try x = 0, y = 1. For these, P(X = 0, Y = 1) = P(Z = 4) = 1/6, and P(X = 0) = 1/2
and P(Y = 1) = 1/2. So the test fails.

Thus X and Y are not independent.

Exercise 1.1. I throw a fair die. Let Z be the result. Let X = (z − 1) mod 2 and Y =
(Z − 1) div 2. Show that X and Y are independent.

Example. In the voting example in Section 1.3, equation (2), are A and N = B + C + D
independent? No: when we added up the probabilities we saw P(A = 0 |N = 0) = 0.737 and
P(A = 0 |N = 1) = 0.534, so they can’t be independent.

Example. Let X and Y be independent Bin(1, p) random variables, so

P(X = x, Y = y) = px(1− p)1−x py(1− p)1−y,

and suppose p is fixed but unknown. Obviously, learning the value of X tells us something
about p (exercise: show that the maximum likelihood estimator for p given X is p̂ = X).
That doesn’t mean that X and Y are independent: the joint probability still factorizes into
an x-part and a y-part, so the definition of independence is satisfied.

Whenever you hear “independent random variables”, it’s a good idea to whisper to
yourself the coda “given their parameters”, so you don’t confuse ‘unrelated’ and ‘independent’.

Exercise 1.2. In this code snippet,
1 def PXY() :
2 P = random.random() # g e n e r a t e s a random number i n [ 0 , 1 ]
3 X = numpy.random. binomial (1 , P)
4 Y = numpy.random. binomial (1 , P)
5 return (P,X,Y)
show that X and Y are not independent. Note however that

P(X = x, Y = y | P = p) = px(1− p)1−x py(1− p)1−y

which we describe as “X and Y are conditionally independent given P”.



1.6 Independence and joint distributions 23

* * *

If we ever try to compute a probability or expectation and we end up with a random variable
on the right hand side, we’ve made a mistake. Probabilities are numbers in [0, 1], and random
variables are functions, and we should be hyper-vigilant about which is which. In machine
learning we want to write things like

P(email is spam) = some function of email contents.
It’s usually intuitively clear what is meant, but when we come across such statements deep
in the middle of a problem with 15 other moving parts it’s sometimes befuddling. Are the
email contents random? If so, what are they doing on the right hand side of a probability
equation? If not, how can the spam-nature be a random variable yet the email’s contents be
non-random?

It often helps to draw out a belief graph, of the sort we drew in Section 1.4, and to
label all random variables with capital letters, and values with lower case letters. Here we
really mean

IsSpam

Contents

and the probability we want is
P(IsSpam = true | Contents = c) = function(c).

As a shorthand for this, we write
P(IsSpam = true | Contents) = function(Contents).

FOR MATHEMATICIANS ONLY

At the beginning of Section 1 we used the working definition “a random variable is a function
that can return different answers”. Now let’s give a better account, which lets us talk about
the joint distribution of two random variables X and Y . This will help clear up some
difficulties with continuous random variables. It’s usually intuitively clear what is needed, so
you should treat this section as background reading, for interest only.

A random variable is a function that can return different answers, in the following
sense:

1 ω = simulate_experiment(parameters)
2 def X() :
3 return some function of ω
4 def Y() :
5 return some other function of ω

Even for Markov chains, we should think of ω as a complete trace of the entire process,
run forever. (Mathematicians don’t worry about simple things like finite memory.) A joint
distribution like P(X = x, Y = y) really means P({ω : X(ω) = x, Y (ω) = y}). Most of the
time we don’t have to worry about this level of detail, but it’s useful in some tricky cases.

DefiniƟons. A pair of continuous random variables X and Y has a joint density function
fX,Y (x, y) such that

P
(
(X,Y ) ∈ A

)
=

∫
(x,y)∈A

fX,Y (x, y) dx dy

for all sets A in the real number line squared. The density must be everywhere ≥ 0 and must
integrate to 1. The marginal density of one of them is

fY (y) =

∫
x

fX,Y (x, y) dy

and the conditional density is

fY |X(y |X = x) =
fX,Y (x, y)

fX(x)
, assuming fX(x) > 0.



24 1.6 Independence and joint distributions

DefiniƟon. Conditional probability, as in P(IsSpam = true |Contents), is fairly intuitive. It’s
also intuitive that we should define

E(X | Y = y) =
∑
x

xP(X = x | Y = y) =
∑
x

x
P(X = x, Y = y)

P(Y = y)
,

and interpret E(X|Y ) accordingly. To be precise, E(X|Y ) is called a conditional expectation,
and it is a random variable (because it depends on Y which is itself a random variable). When
Y is a continuous random variable, though, P(Y = y) = 0 so the conditioning doesn’t make
sense—it’s a divide-by-zero error—but all we need to do is replace terms like P(X = x|Y = y)
by densities fX|Y (x|Y = y), and replace sums by integrals.


