
Revision exercises
Foundations of Data Science—DJW—2017/2018

This sample of questions contains some that are harder or longer than an exam question, and some that are shorter
or easier. Each of these questions, like an exam question, draws on ideas from several parts of the course.

Question 1. (a) Let X1, X2, . . . , Xn be a random sample taken from the Uniform[−θ, θ] distribution, where θ is
some unknown parameter. Derive a formula for the maximum likelihood estimator for θ.

(b) Explain how to use the resampling method to compute an approximate confidence interval for θ. Give
pseudocode.

(c) Many datasets contain a few extreme outliers, for example because of a glitch in data collection. To allow
for this, suppose that each Xi is Uniform[−θ, θ] with probability p, and Normal(0, σ2) with probability 1 − p.
Here p ∈ [0, 1] and σ > 0 are unknown parameters. Derive an expression for the log likelihood of (θ, p, σ).

(d) Numerical optimization is often easier when parameters are unconstrained, i.e. allowed to take any value −∞
to +∞. Rewrite your log likelihood expression in terms of unconstrained parameters.

Note: In the exam, you would be told the density function for the Uniform and Normal distributions.

Question 2. A common task in data processing is counting the number of unique items in a collection. When the
collection is too large to hold in memory, we may wish to use fast approximation methods, such as the following:

Given a collection of items A1, A2, . . . , compute the hash of each item X1 = h(A1), X2 = h(A2), . . . , and
compute

T = max
1≤i≤n

Xi .

If the hash function is well designed, then each Xi can be treated as uniformly distributed in [0, 1], and unequal
items will yield independent Xi .
(a) Show that P(T ≤ t) = tm, where m is the number of unique items in the collection. Find the density function

for T .
(b) Find the maximum likelihood estimator for m.
(c) Explain how to use the resampling method to find a confidence interval for m.

Note: You should explain the general procedure for resampling, and give pseudocode for this case. In questions
like this one, where we want to study the distribution of a maximum, there are issues with the accuracy of the
resampling procedure; in your answer you are expected to apply the procedure, not to worry about its accuracy.

Question 3. (a) Define the term stationary, as applied to Markov chains.
(b) Consider the noisy recurrence relation

Xn+1 = αXn + σεn

where 0 < α < 1, and (ε0, ε1, . . . ) is a collection of independent Normal(0, 1) random variables. Write
down expressions for the mean and variance of Xn+1 in terms of those for Xn. Assuming that the sequence
(X0, X1, . . . ) is stationary, calculate the mean and variance of Xn.

(c) By writing Xn in terms of ε0, . . . , εn−1, or otherwise, find the stationary distribution.

Note: In lectures you studied Markov chains with a finite state space, whereas here Xn is a real number. The
question is asking you to apply your knowledge of stationarity to a new setting.

Question 4. A compulsive gampler has a choice of two machines to play. The first has probability α1 of paying
out, the second has probability α2. The gambler doesn’t know the values of the parameters α1 and α2, so treats
them as unknown parameters, both with prior distribution Beta(δ, δ) where δ = 0.5. Here are some strategies that
the gambler might use to decide which machine to play next:
• Greedy: after each turn, compute the posterior distribution of α1 and α2. Play the machine with the larger

posterior mean.

1



• ε-greedy: At each turn, with probability 1 − ε play the machine with the larger posterior mean, and with
probability ε pick a machine uniformly at random.

• Probabilistic: compute the probability that α1 > α2 using the posterior distributions, and play machine 1 with
this probability.

• “Thompson sampling”: generate A1 from the posterior distribution for α1, and generate A2 from the posterior
distribution for α2; play machine 1 if A1 > A2 and machine 2 otherwise.

(a) After w1 wins and l1 losses on the first machine, what is the posterior distribution of α1? Explain your
calculation.

(b) Give pseudocode for the probabilistic strategy. (You may assume there is a library routine rbeta(x,y) that
generates a random value from the Beta(x, y) distribution.) Discuss the relationship between the probabilistic
strategy and Thompson’s sampling strategy.

(c) After n1 plays of machine 1, give an approximate 95% confidence interval for the number of wins of that
machine.

(d) Discuss how the strategies are likely to perform. In your answer, you might consider whether the gambler can
end up playing only one machine, and whether that one machine is the one with the smaller payout probability.

Note: in the exam, you would be given the density function, mean and variance of the Beta distribution. Part (d) is
more open ended than you would be asked in the exam, but it is nonetheless possible to give a crisp answer using
the techniques you’ve learnt in the course. Hint: use your answer to part (c) in your answer to (d).

Question 5.

(a) Let Y1, . . . , Yn be a random sample taken from the distribution P(Yi = 1) = eξ/(1+ eξ ), where ξ is an unknown
parameter. Find the maximum likelihood estimator for ξ.

Three chess players play each other. In a tournament, A won 7 matches against B and lost 3, A won 9 matches
against C and lost 1, and B won 6 matches against C and lost 4. We wish to ascribe a skill level for each player, such
that the higher the skill difference the more likely it is that the higher-skilled player will win a match. Let µA, µB,
and µC be skill levels, and consider this model: if match i is between players p1(i) and p2(i) then the probability
that p1(i) wins is eξi /(1 + eξi ) where ξi = µp1(i) − µp2(i).
(a) Find the log likelihood of (µA, µB, µC).
(b) Explain what is meant by a linear model. Write down a linear model for the vector (ξ1, . . . , ξ30) in which the

unknown parameters are µA, µB, and µC . Explain what the features are in your model.
(c) Explain the term linear independence. Show that the features you identified are not linearly independent.
(d) Give pseudocode for computing the maximum likelihood estimator of (µA, µB, µC). You may assume that

there is a general purpose library routine fmin( f ,x0) which finds x to minimize an arbitrary function f (x)
with initial guess x = x0. Explain your code.

Hint: what does part (c) tell you about part (d)?
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