Solutions 0

Question 1. A card is drawn at random from a pack. Event A is 'the card is an ace', event B is 'the card is a spade', event C is 'the card is either an ace, or a king, or a queen, or a jack, or a 10'. Compute the probability that the card has (i) one of these properties, (ii) all of these properties.

```
(i) The question is unclear. Does if mean" at leage one" or "precisely ore"? Ill inperpret ir as "at least"
    P}(A\cupB\cupC)=\mathbb{P}(\mathrm{ ace or spade or ace, king, queen, jork,10)=}=\frac{13+3\times5}{52}=\frac{28}{52}=7/1
iii) }\mathbb{P}(A\capB\capC)=\mathbb{P}(\mathrm{ ace & spade & (ace, k, q,j,or 10))}=\mathbb{P}(\mathrm{ ace of spades) }=\frac{1}{\mp@subsup{s}{2}{}
```

Question 2. A biased die has probabilities $p, 2 p, 3 p, 4 p, 5 p, 6 p$ of throwing $1,2,3,4,5,6$ respectively. Find p. What is the probability of throwing an even number?

$$
\begin{aligned}
& \text { Probabilines sum to 1, so } p(1+2+3+4+5+6)=1 \Rightarrow p=\frac{1}{21} \\
& p(\text { even })=2 p+4 p+6 p=\frac{12}{21}
\end{aligned}
$$

Question 3. Consider drawing 2 balls out of a bag of 5 balls: 1 red, 2 green, 2 blue. What is the probability of the second ball drawn from the bag being blue given that the first ball was blue if (i) the first ball is replaced, (ii) the first ball is not replaced?

```
(i) If it's replaced, ir's immaterial what colour the first ball was
    \(\mathbb{P}(\) blue \()=2 / 5\)
(ii) Whats left is Ired, 2green, I blue. \(\quad \mathbb{D}(\) blue \()=1 / 4\).
```

Question 4. Two cards are drawn from a deck of cards. What is the probability of drawing two queens, given that the first card is not replaced?

$$
\mathbb{P}(\text { first is queen \& xacond is queen })=\frac{4}{52}+\frac{3}{51} \text {. }
$$

Question 5. A screening test is 99% effective in detecting a certain disease when a person has the disease. The test yields a 'false positive' for 1% of healthy persons tested. Suppose 0.1% of the population has the disease. (i) What is the probability that a person whose test is positive has the disease? (ii) What is the probability that a person whose test is negative actually has the disease after all?
We've toid. $\quad \mathbb{P}($ rest + ve \mid direare $)=0.99$
$\mathbb{P}($ hest + ve 1 heally $)=001$
$p($ diseare $)=0001$
i)

$$
\begin{aligned}
& =\frac{0.99 \times 0001}{0.99 \times 0.001+0.01 \times 0.999}=9.0 \%
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathbb{P}(\text { disase } \mid \text { test-ve }) & =\frac{\mathbb{P}(\text { rst-ve } \mid \text { dixas) } \mathbb{P}(\text { disease })}{\mathbb{P}(\text { rit -ve } \mid \text { dixase }) \mathbb{P}(\text { digease })+\mathbb{P}(\text { test -ve } \mid \text { healthy }) \mathbb{P}(\text { healthy })} \\
& =\frac{(1-8.99) \times 0.001}{(1-099) \times 0001+(1-001) \times 0.999}=0.001 \%
\end{aligned}
$$

Question 6. What is the probability that in a room of r people at least two have the same birthday?

$$
\begin{aligned}
& \text { Model: everyone's birthday is independent, dramun unifomly on }\{1,2, \cdots, 365\} \text { days of the year. } \\
& \begin{aligned}
\mathbb{P}(\geqslant 2 \text { have same birthday }) & =1-\mathbb{P} \text { (all have different birthdays) } \\
& =1-\mathbb{P}\left(\text { 2nd dift. to lst, 3rd diff. to } 1 s+82 n d, \cdots, \text { rth dilf. to } 13 t, 2 n d, \cdots,(r-1)^{\text {th }}\right) \\
& =1-\frac{364}{365} \times \frac{363}{365} \times \cdots \times \frac{(365-(r-1))}{365}=1-\frac{365!}{(365-r)!365^{4}}
\end{aligned}
\end{aligned}
$$

Question 7. Out of 10 physics professors and 12 chemistry professors, a committee of 5 people must be chosen in which each subject has at least 2 representatives. In how many ways can this be done?

Ignoring the constraints, there are $\binom{22}{5}$ pasible commornces
$\left.\begin{array}{lll}\text { How many of them have } & 0 \text { physics? } & \binom{12}{5} \\ 1 \text { physies? } & 10 \times\binom{ 12}{4} \\ 0 \text { chaming? } & \binom{10}{5} \\ & 1 \text { chamishy? } & 12 \times\binom{ 10}{4}\end{array}\right\}$ and these are all disjoint
So, total number of acceptable comirroes is $\left.\binom{22}{5}-\binom{12}{5}+10\binom{12}{4}+\binom{10}{5}+12\binom{10}{4}\right)=17820$

Question 8. What is the probability of throwing exactly 3 heads out of 6 tosses of a fair coin? How about at least one head?

$$
\begin{equation*}
\binom{6}{3} \times\left(\frac{1}{2}\right)^{6} \tag{i}
\end{equation*}
$$

(ii) $\mathbb{P}(\#$ heads $\geqslant 1)=1-\mathbb{P}($ \#heads $=0)=1-\left(\frac{1}{2}\right)^{6}$.

Question 9. A bag contains 6 blue balls and 4 red balls. Three balls are drawn from the bag without replacement. Let X be the number of these three balls that are red. Find the density function $f(x)=\mathbb{P}(X=x)$.

$$
\begin{aligned}
& \mathbb{P}(x=0)=\frac{6 \cdot 5 \cdot 4}{10 \cdot 9 \cdot 8} \\
& \mathbb{P}(x=1)=R B B, B R B \text { or } B B R: \quad \frac{4.65+6.4 .5+654}{10.9 .8}=3 \times \frac{6.5 \cdot 4}{10.9 .8} \\
& \mathbb{P}(x=2)=\frac{R R B_{1}, R B R, \text { or } B R R: \quad \frac{43.6+4.63+6.4 .3}{16.98}}{109.8}=3 \times \frac{6.4 .3}{10.9 .8} \\
& \mathbb{P}(x=3)=\frac{4.3 .2}{10.8}
\end{aligned}
$$

Question 10. Find the mean and variance of the Exponential distribution, which has density

$$
f(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x} \text { if } x \geq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

What is the probability that X takes a value in excess of two standard deviations from the mean?

$$
\begin{aligned}
& \text { Mean: } \mathbb{E} X=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\left[-x e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-e^{-\lambda x}\right) d x \quad \text { (inneyration by parrs) } \\
& =\left[-\frac{1}{\lambda} e^{-\lambda x}\right]_{0}^{\infty}=\frac{1}{\lambda} \text {. } \\
& \text { Variance. } \quad \operatorname{Var} X=E\left(X-\frac{1}{\lambda}\right)^{2}=\int_{0}^{\infty}\left(x-\frac{1}{\lambda}\right)^{2} \lambda e^{-\lambda x} d x \\
& =\left[\left(x-\frac{1}{\lambda}\right)^{2}\left(-e^{-\lambda x}\right)\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-e^{-\lambda x}\right) 2\left(x-\frac{1}{\lambda}\right) d x \\
& =\frac{1}{\lambda^{2}}+2 \int_{0}^{\infty} x e^{-\lambda x} d x-\frac{2}{\lambda} \int_{0}^{\infty} e^{-\lambda x} d x \\
& =\frac{1}{\lambda^{2}}+\frac{2}{\lambda^{2}}+\frac{2}{\lambda^{2}}\left[e^{-\lambda x}\right]_{0}^{\infty}=\frac{1}{\lambda^{2}}+\frac{2}{\lambda^{2}}-\frac{2}{\lambda^{2}}=\frac{1}{\lambda^{2}} \\
& \text { Prob: } \mathbb{P}\left(x>\frac{1}{\lambda}+\frac{2}{\lambda}\right)=\mathbb{P}\left(x>\frac{3}{\lambda}\right)=\int_{3 / \lambda}^{\infty} \lambda e^{-\lambda x}=\left[-e^{-\lambda x}\right]_{3 / \lambda}^{\infty}=e^{-3}
\end{aligned}
$$

Question 11. Players A and B roll a six-sided die in turn. If a player rolls 1 or 2 that player wins and the game ends; if a player rolls 3 the other player wins and the game ends; otherwise the turn passes to the other player. A has the first roll. What is the probability (i) that B gets a first throw and wins on it? (ii) that A wins before A 's second throw? (iii) that A wins, if the game is played until there is a winner?
(i) $\mathbb{P}(B$ gets a first throw and wins on it)

$$
=\mathbb{P}(A \text { rolls } 4 / 5 / 6 \text { then } B \text { rolls } 1 / 2)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

(ii) $\mathbb{P}(A$ wins before A 's second throw)?

$$
\begin{aligned}
& \text { A rolls } 1 / 2 \\
& \text { or } A \text { rolls } 4 / 5 / 6 \text { then } B \text { rolls } 3 \quad \mathbb{P}=\frac{1}{3}+\frac{1}{2} \times \frac{1}{6}=\frac{5}{12}
\end{aligned}
$$

(IIi) Let $\pi_{A}=\mathbb{P}\left(A\right.$ wins evewhally $\mid A^{\prime} s$ turn $)$

$$
\Pi_{B}=\mathbb{P}(A \text { wins eventually } \mid \text { B's turn }) \text {. }
$$

$$
\begin{aligned}
& \pi_{A}=\frac{1}{3}+\frac{1}{2} \pi_{B} \quad \text { (A wins straight annoy, or play pass to } B \text { annal then } A \text { wins) } \\
& \pi_{B}=\frac{1}{6}+\frac{1}{2} \pi_{A} \quad \text { (Bthrans } 3 \text { so A wins, or play passes to } A \text { then } A \text { wins). } \\
& \text { Note: I'm using the Lar of Total Probability, and Memorylessress, } \\
& \text { Solving there simultaneously, } \\
& \pi_{A}=\frac{1}{3}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{2} \pi_{A}\right)=\frac{3}{12}+\frac{\pi_{A}}{4} \Rightarrow \frac{\pi_{A}}{4}=\frac{5}{12} \Rightarrow \pi_{A}=\frac{3}{12} \times \frac{4}{3}=\frac{5}{9}
\end{aligned}
$$

Question 12. Players A and B take turns to toss a coin, stopping as soon as B has 6 heads. How many ways could A end up with one head? two heads?

$$
\begin{aligned}
& \text { The question is nor well-put - there are infinitely many ways (ccontring all the tails) } \\
& \text { But we can still enumerate them! Ill use regular expression syntax. }
\end{aligned}
$$

The question doestit say who pes first. 67 's assume A.

For A to get I head.

$$
\begin{aligned}
& \left(t_{A} t_{B}\right) * H_{A} \underbrace{\left(t_{B} t_{A}\right) * H_{B} \quad t_{A}}_{\text {times }}\left(t_{B} t_{A}\right) * H_{B} \\
& \text { or } \quad\left(t_{A} t_{B}\right) * t_{A} H_{B} \quad\left(t_{A} t_{B}\right) * H_{A} \underbrace{\left(t_{B} t_{A}\right) * H_{B} t_{A}}_{4 \text { times }}\left(t_{B} t_{A}\right) * H_{B} \\
& \text { The are all elaborations on the sequence of heads: } \\
& H_{A} \underbrace{H_{B}}_{6 \text { times }} \text { or } H_{B} H_{A} \underbrace{H_{B}}_{\text {times }} \text { or or } \underbrace{H_{B}}_{\text {times }} H_{A} H_{B} \\
& \text { but with "parity" tails and "repetition" tails filled in as appropriate. } \\
& \text { The rule is. if the head sequence starts } H_{A} \text {, insert }\left(t_{A} t_{B}\right) * \text { infront } \quad\left(t_{A} t_{B}\right) * t_{A} \text { in front } \\
& \text { if the head sequence has } H_{A} H_{B} \text {, insert }\left(t_{B} t_{A}\right) * \text { inbetween } \\
& H_{B} H_{A} \quad\left(t_{A} t_{B}\right)^{*} \text { in between } \\
& H_{B} H_{B} \quad\left(t_{A}, t_{B}\right) * t_{A} \text { in between } \\
& H_{A} H_{A} \quad\left(t_{B} t_{A}\right) * t_{B} \text { in between }
\end{aligned}
$$

For A to get 2 heads
the head sequence must be (two H_{A}, $S H_{B}$ inanyorder) then H_{B}
and there are $\binom{7}{2}$ such choices

Question 13. Find the value of $p \in[0,1]$ that maximizes $p^{a}(1-p)^{b}$, where a and b are both positive. [Hint: take logarithms first.]

$$
\begin{aligned}
& \text { let } \quad \operatorname{lik}(p)=p^{a}(1-p)^{b} \\
& \operatorname{loghk}(p)=a \log p+b \log (1-p) \quad \text { a } \\
& \text { The maximum is at } \frac{d}{d p}=0 \text { : } \frac{a}{\hat{p}}-\frac{b}{1-\hat{p}}=0 \Rightarrow \frac{a}{\hat{p}}=\frac{b}{1-\hat{p}} \Rightarrow a-a \hat{p}=b \hat{p} \Rightarrow \hat{p}=\frac{a}{a+b}
\end{aligned}
$$

We could also derble-check the second demiative:
$\frac{d^{2}}{d p^{2}}=-\frac{a}{p^{2}}-\frac{b}{(1-p)^{2}}$ which is <0 for all p, hence the function is strictly concave, so $\frac{d}{d p}=0$ must be a maximum.

