
9/28/17

1

Concurrent	systems
Lecture	4:	Deadlock,	Livelock,	and	Priority	Inversion

Dr Robert	N.	M.	Watson

1

The	Deadlock Lecture

Reminder	from	last	time

• Multi-Reader	Single-Writer	(MRSW)	locks
• Alternatives	to	semaphores/locks:
– Conditional	critical	regions	(CCRs)
–Monitors
– Condition	variables
– Signal-and-wait	vs.	signal-and-continue	
semantics

• Concurrency	primitives	in	practice
• Concurrency	primitives	wrap-up

2

9/28/17

2

From	last	time:	primitives	summary

• Concurrent	systems	require	means	to	ensure:
– Safety (mutual	exclusion	in	critical	sections),	and
– Progress (condition	synchronization)

• Spinlocks	(busy	wait);	semaphores;	CCRs	and	monitors
– Hardware	primitives	for	synchronisation
– Signal-and-Wait	vs.	Signal-and-Continue

• Many	of	these	are	still	used	in	practice
– Subtle	minor	differences	can	be	dangerous
– Require	care	to	avoid	bugs	– e.g.,	“lost	wakeups”

• More	detail	on	implementation	in	our	case	study

3

Progress is	particularly	difficult,	in	large	part	because	of	
primitives	themselves,	which	is	the	topic	of	this	lecture

This	time

• Liveness	properties
• Deadlock
– Requirements
– Resource	allocation	graphs	and	detection
– Prevention	– the	Dining	Philosophers	Problem	– and	
recovery

• Thread	priority and	the	scheduling	problem
• Priority	inversion
• Priority	inheritance

4

9/28/17

3

Liveness properties

• From	a	theoretical	viewpoint	must	ensure	that	
we	eventually	make	progress,	i.e.	want	to	avoid
– Deadlock (threads	sleep	waiting	for	one	another),	and
– Livelock (threads	execute	but	make	no	progress)

• Practically	speaking,	also	want	good	performance
– No	starvation	(single	thread	must	make	progress)
– (more	generally	may	aim	for	fairness)	
– Minimality (no	unnecessary	waiting	or	signaling)

• The	properties	are	often	at	odds	with	safety	:-(

5

Deadlock
• Set	of	k	threads	go	asleep	and	cannot	wake	up
– each	can	only	be	woken	by	another	who’s	asleep!

• Real-life	example	(Kansas,	1920s):	
– “When	two	trains	approach	each	other	at	a	crossing,	both	
shall	come	to	a	full	stop	and	neither	shall	start	up	again	
until	the	other	has	gone.”

• In	concurrent	programs,	tends	to	involve	the	taking	of	
mutual	exclusion	locks,	e.g.:

6

// thread 2
lock(Y);

...
if(<cond>) {

lock(X);
...

// thread 1
lock(X);
...
lock(Y);
// critical section
unlock(Y);

Risk	of	deadlock	if	
both	threads	get	here	

simultaneously

9/28/17

4

Requirements	for	deadlock
• Like	all	concurrency	bugs,	deadlock	may	be	rare	(e.g.	
imagine	<cond>	is	mostly	false)

• In	practice	there	are	four	necessary	conditions
1. Mutual	Exclusion:	resources	have	bounded	#owners
2. Hold-and-Wait:	can	acquire	Rx	and	wait	for	Ry
3. No	Preemption:	keep	Rx	until	you	release	it
4. Circular	Wait:	cyclic	dependency

• Require	all	four	to	be	true	to	get	deadlock
– But	most	modern	systems	always	satisfy	1,	2,	3

• Tempting	to	think	that	his	applies	only	to	locks	…
– But	it	also	can	occur	for	many	other	resource	classes	
whose	allocation	meets	conditions:	memory,	CPU	time,	…

7

Resource	allocation	graphs
• Graphical	way	of	thinking	about	deadlock
– Circles are	threads	(or	processes)
– Boxes are	single-owner	resources	(e.g.	mutexes)
– Edges	show	lock	hold	and	wait conditions
– A	cyclemeans	we	(will)	have	deadlock

8

T1 T3T2

Ra Rb Rc Rd

Thick	line	R->T	means
T	holds resource	R

Dashed	line	T->R
T	wants resource	R

Deadlock!

9/28/17

5

Resource	allocation	graphs

• Can	generalize	to	resources	which	can	have	K
distinct	users	(c/f	semaphores)

• Absence	of	a	cycle	means	no	deadlock…
– but	presence	only	means	may	have deadlock,	e.g.

9

Ra(1) Rb(2) Rc(2) Rd(1)

T1 T3T2 T4

Resource	in	
quantity	1

Resource	in	quantity	2
No	deadlock: If	T1	releases	Rb,	then	
T3’s	acquire	of	Rb can	be	satisfied

Dealing	with	deadlock

1. Ensure	it	never	happens
– Deadlock	prevention	
– Deadlock	avoidance	(Banker’s	Algorithm)

2. Let	it	happen,	but	recover
– Deadlock	detection	&	recovery

3. Ignore	it!	
– The	so-called	“Ostrich	Algorithm”	;-)
– “Have	you	tried	turning	it	off	and	back	on	again?”
– Very	widely	used	in	practice!	

10

9/28/17

6

Deadlock	prevention
1. Mutual	Exclusion:	resources	have	bounded	#owners
– Could	always	allow	access…	but	probably	unsafe	;-(
– However	can	help	e.g.	by	using	MRSW	locks	

2. Hold-and-Wait:	can	get	Rx	and	wait	for	Ry
– Require	that	we	request	all	resources	simultaneously;	

deny	the	request	if	any	resource	is	not	available	now
– But	must	know	maximal	resource	set	in	advance	=	hard?

3. No	Preemption:	keep	Rx	until	you	release	it
– Stealing	a	resource	generally	unsafe	(but	see	later)

4. Circular	Wait:	cyclic	dependency
– Impose	a	partial	order	on	resource	acquisition
– Can	work:	but	requires	programmer	discipline
– Lock	order	enforcement	rules	used	in	many	systems	e.g.,	

FreeBSD	WITNESS	– static	and	dynamic	orders	checked
11

Example:	Dining	Philosophers

• 5	philosophers,	5	forks,	round	table…

12

while(true) { // philosopher i
think();
wait(fork[i]);
wait(fork[(i+1) % 5];
eat();
signal(fork[i]);
signal(fork[(i+1) % 5];

}

Semaphore forks[] = new Semaphore[5];

• Possible	for	everyone	to	acquire ‘left’	fork	(i)
• Q:	what	happens	if	we	swap	order	of	signal()s?	

9/28/17

7

Example:	Dining	Philosophers

• (one)	Solution:	always	take	lower	fork	first	

13

while(true) { // philosopher i
think();
first = MIN(i, (i+1) % 5);
second = MAX(i, (i+1) % 5);
wait(fork[first]);
wait(fork[second];
eat();
signal(fork[second]);
signal(fork[first]);

}

Semaphore forks[] = new Semaphore[5];

• Now	even	if	0,	1,	2,	3	are	held,	4	will	not	acquire	final	fork

Deadlock	avoidance
• Prevention	aims	for	deadlock-free	“by	design”
• Deadlock	avoidance is	a	dynamic	scheme:	
– Assumption:	We	know	maximum	possible	resource	
allocation	for	every	process	/	thread

– Assumption:	A	process	granted	all	desired	resources	
will	complete,	terminate,	and	free	its	resources

– Track	actual	allocations	in	real-time
– When	a	request	is	made,	only	grant		if	guaranteed	no	
deadlock	even	if	all	others	take	max	resources

• E.g.	Banker’s	Algorithm	– see	textbooks	
– Not	really	useful	in	general	as	need	a	priori	knowledge	
of	#processes/threads,	and	their	max	resource	needs

14

9/28/17

8

Deadlock	detection
• Deadlock	detection	is	a	dynamic	scheme	that	determines	if	

deadlock	exists
– Principle:	At	a	some	moment	in	execution,	examine	resource	

allocations	and	graph
– Determine	if	there	is	at	least	one	plausible	sequence	of	events	

in	which	all	threads	could	make	progress
– I.e.,	check	that	we	are	not	in	an	unsafe	state	in	which	no	further	

sequences	can	complete	without	deadlock
• When	only	a	single	instance	of	each	resource,	can	explicitly	

check	for	a	cycle:
– Keep	track	which	object	each	thread	is	waiting	for
– From	time	to	time,	iterate	over	all	threads	and	build	the	

resource	allocation	graph
– Run	a	cycle	detection	algorithm	on	graph	O(n2)	

• More	difficult	if	have	multi-instance	resources
15

Deadlock	detection
• Have	m	distinct	resources	and	n	threads
• V[0:m-1],	vector	of	currently available	resources
• A,	the	m	x	n resource	allocation	matrix,	and	R,	
the	m	x	n (outstanding)	request	matrix
– Ai,j is	the	number	of	objects	of	type	j owned	by	i
– Ri,j is	the	number	of	objects	of	type	j needed	by	i

• Proceed	by	successively	marking	rows	in	A for	
threads	that	are	not	part	of	a	deadlocked	set	
– If	we	cannot	mark	all	rows	of	A we	have	deadlock

16
Optimistic	assumption:	if	we	can	fulfill	thread	i’s	request	Ri,	then	it	will	run	
to	completion	and	release	held	resources	for	other	threads	to	allocate.

9/28/17

9

Deadlock	detection	algorithm

• Mark	all	zero	rows	of	A (since	a	thread	holding	
zero	resources	can’t	be	part	of	deadlock	set)

• Initialize	a	working	vector	W[0:m-1]	to	V
– W[]	describes	any	free	resources	at	start,	plus any	
resources	released	by	a	hypothesized	sequence	of	
satisfied	threads	freeing	and	terminating	

• Select	an	unmarked	row	i of	A s.t.	R[i]	<=	W
– (i.e.	find	a	thread	who’s	request	can	be	satisfied)
– Set	W =	W +	A[i];	mark	row	i,	and	repeat

• Terminate	when	no	such	row	can	be	found
– Unmarked	rows	(if	any)	are	in	the	deadlock	set

17

Deadlock	detection	example	1

• Five	threads	and	three	resources	(none	free)

18

X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 0
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

A R V

• Find	an	unmarked	row,	mark	it,	and	updateW
• T0,	T2,	T3,	T4,	T1

W

X Y Z
0 0 0
X Y Z
0 1 0
X Y Z
3 1 3
X Y Z
5 2 4
X Y Z
5 2 5
X Y Z
7 2 5

At	the	end	of	the	algorithm,	all	rows	are	marked:
the	deadlock	set	is	empty.

9/28/17

10

Deadlock	detection	example	2

• Five	threads	and	three	resources	(none	free)

19

X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 1
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

A R V

• One	minor	tweak	to	T2’s	request	vector…

W

X Y Z
0 0 0
X Y Z
0 1 0

Cannot	find	a	row	in	
R	<=	W!!

Now	wants	one	unit	
of		resource	Z

Threads	T1,	T2,	T3	&	
T4	in	deadlock	set

Deadlock	recovery
• What	can	we	do	when	we	detect	deadlock?
• Simplest	solution:	kill	something!
– Ideally	someone	in	the	deadlock	set	;-)

• Brutal,	and	not	guaranteed	to	work	
– But	sometimes	the	best	(only)	we	can	do	
– E.g.	Linux	OOM	killer	(better	than	system	reboot?)
– …	Or	not	– often	kills	the	X	server!

• Could	also	resume	from	checkpoint
– Assuming	we	have	one

• In	practice	computer	systems	seldom	detect	or	
recover	from	deadlock:	rely	on	programmer

20Note:	“kill	someone”	breaks	the	no	preemption precondition	for	deadlock.

9/28/17

11

Livelock
• Deadlock	is	at	least	‘easy’	to	detect	by	humans
– System	basically	blocks	&	stops	making	any	progress

• Livelock	is	less	easy	to	detect	as	threads	continue	to	
run…	but	do	nothing	useful

• Often	occurs	from	trying	to	be	clever,	e.g.:

21

// thread 2
lock(Y);

...
while(!trylock(X)) {

unlock(Y);
yield();
lock(Y);

}
...

// thread 1
lock(X);
...
while (!trylock(Y)) {

unlock(X);
yield();
lock(X);

}
...

Scheduling	and	thread	priorities
• Which	thread	should	run	when	>1	runnable?	E.g.,	if:
– A	thread	releases	a	contended	lock	and	continues	to	run
– CV	broadcast	wakes	up	several	waiting	threads

• Many	possible	scheduling	policies;	e.g.,
– Round	robin	– rotate	between	threads	to	ensure	progress
– Fixed	priorities	– assign	priorities	to	threads,	schedule	
highest– e.g.,	real-time	>	interactive >		bulk >	idle-time

– Dynamic	priorities	– adjust	priorities	to	balance	goals	–
e.g.,	boost	priority	after	I/O	to	improve	interactivity

– Gang	scheduling	– schedule	for	patterns	such	as	P-C
– Affinity	– schedule	for	efficient	resource	use	(e.g.,	caches)

• Goals:	latency	vs.	throughput,	energy,	“fairness”,	…
– NB:	These	competing	goals	cannot	generally	all	be	satisfied

22

9/28/17

12

Priority	inversion
• Another	liveness	problem…
– Due	to	interaction	between	locking	and	scheduler

• Consider	three	threads:	T1,	T2,	T3
– T1 is	high	priority,	T2medium	priority,	T3 is	low
– T3 gets	lucky	and	acquires	lock	L…	
– …	T1 preempts	T3 and	sleeps	waiting	for	L…
– …	then	T2 runs,	preventing	T3 from	releasing	L!
– Priority	inversion:	despite	having	higher	priority	and	
no	shared	lock,	T1 waits	for	lower	priority	thread	T2

• This	is	not	deadlock	or	livelock
– But	not	desirable	(particularly	in	real-time	systems)!
– Disabled	Mars	Pathfinder	robot	for	several	months

23

Priority	inheritance
• Typical	solution	is	priority	inheritance:	
– Temporarily	boost	priority	of	lock	holder	to	that	of	the	
highest	waiting	thread

– T3 would	have	run	with	T1’s	priority	while	holding	a	
lock	T1 was	waiting	for	– preventing	T2 from	
preempting	T3

– Concrete	benefits	to	system	interactivity	
– (some	RT	systems	(like	VxWorks)	allow	you	specify	on	
a	per-mutex basis	[to	Rover’s	detriment	;-])

• Windows	“solution”
– Check	if	any	ready	thread	hasn’t	run	for	300	ticks
– If	so,	double	its	quantum	and	boost	its	priority	to	15
– J

24

9/28/17

13

Problems	with	priority	inheritance
• Hard	to	reason	about	resulting	behaviour:	heuristic
• Works	for	locks
– More	complex	than	it	appears:	propagation	might	need	to	
be	propagated across	chains	containing	multiple	locks

– How	might	we	handle	reader-writer	locks?
• How	about	condition	synchronisation,	res.	allocation?
– With	locks,	we	know	what	thread	holds	the	lock
– Semaphores	do	not	record	which	thread	might	issue	a	
signal	or	release	an	allocated	resource

– Must	compose	across	multiple	waiting	types:	e.g.,	“waiting	
for	a	signal	while	holding	a	lock”

• Where	possible,	avoid	the	need	for	priority	inheritance
– Avoid	sharing	between	threads	of	differing	priorities 25

Summary	+	next	time
• Liveness properties
• Deadlock

– Requirements
– Resource	allocation	graphs	and	detection
– Prevention	– the	Dining	Philosophers	Problem	– and	recovery

• Thread	priority and	the	scheduling	problem
• Priority	inversion
• Priority	inheritance

• Next	time:
– Concurrency	without	shared	data
– Active	objects;	message	passing
– Composite	operations;	transactions
– ACID	properties;	isolation;	serialisability 26

