
Complexity Theory

Anuj Dawar

Texts

The main texts for the course are:
Computational Complexity.
Christos H. Papadimitriou.

Introduction to the Theory of Computation.
Michael Sipser.

Anuj Dawar Complexity Theory

References

Other useful references include:
Computers and Intractability: A guide to the theory of NP-completeness.
Michael R. Garey and David S. Johnson.

P, NP and NP-completeness.
Oded Goldreich.

Computability and Complexity from a Programming Perspective.
Neil Jones.

Computational Complexity - A Modern Approach.
Sanjeev Arora and Boaz Barak.

Anuj Dawar Complexity Theory

Outline

A rough lecture-by-lecture guide, with relevant sections from the text by
Papadimitriou (or Sipser, where marked with an S).

• Algorithms and problems. 1.1�1.3.

• Time and space. 2.1�2.5, 2.7.

• Time Complexity classes. 7.1, S7.2.

• Nondeterminism. 2.7, 9.1, S7.3.

• NP-completeness. 8.1�8.2, 9.2.

• Graph-theoretic problems. 9.3

Anuj Dawar Complexity Theory

Outline - contd.

• Sets, numbers and scheduling. 9.4

• coNP. 10.1�10.2.

• Cryptographic complexity. 12.1�12.2.

• Space Complexity 7.1, 7.3, S8.1.

• Hierarchy 7.2, S9.1.

• Descriptive Complexity 5.7, 8.3.

Anuj Dawar Complexity Theory

Algorithms and Problems

Insertion Sort runs in time O(n2), while Merge Sort is an
O(n log n) algorithm.

The �rst half of this statement is short for:

If we count the number of steps performed by the Insertion Sort
algorithm on an input of size n, taking the largest such number,
from among all inputs of that size, then the function of n so
de�ned is eventually bounded by a constant multiple of n2.

It makes sense to compare the two algorithms, because they seek to solve
the same problem.
But, what is the complexity of the sorting problem?

Anuj Dawar Complexity Theory

Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a
list?

By the analysis of the Merge Sort algorithm, we know that this is no
worse than O(n log n).

The complexity of a particular algorithm establishes an upper bound on
the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm,
including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),
showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

Anuj Dawar Complexity Theory

Review

The complexity of an algorithm (whether measuring number of steps, or
amount of memory) is usually described asymptotically:

De�nition
For functions f : IN→ IN and g : IN→ IN, we say that:

• f = O(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≤ cg(n);

• f = Ω(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≥ cg(n).

• f = θ(g) if f = O(g) and f = Ω(g).

Usually, O is used for upper bounds and Ω for lower bounds.

Anuj Dawar Complexity Theory

Lower Bound on Sorting
An algorithm A sorting a list of n distinct numbers a1, . . . , an.

done done done done done

ai < aj?

ak < al?
ap < aq?

ar < as?
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

To work for all permutations of the input list, the tree must have at least
n! leaves and therefore height at least log2(n!) = θ(n log n).

Anuj Dawar Complexity Theory

Travelling Salesman

Given

• V � a set of nodes.

• c : V × V → IN � a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1∑
i=1

c(vi , vi+1)

is the smallest possible.

Anuj Dawar Complexity Theory

Complexity of TSP

Obvious algorithm: Try all possible orderings of V and �nd the one with
lowest cost.
The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower bound of
Ω(n log n).

Upper bound: The currently fastest known algorithm has a running time
of O(n22n).

Between these two is the chasm of our ignorance.

Anuj Dawar Complexity Theory

Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather than a
speci�c algorithm, we need to prove a statement about all algorithms for
solving it.

In order to prove facts about all algorithms, we need a mathematically
precise de�nition of algorithm.

We will use the Turing machine.

The simplicity of the Turing machine means it's not useful for
actually expressing algorithms, but very well suited for proofs
about all algorithms.

Anuj Dawar Complexity Theory

Turing Machines

For our purposes, a Turing Machine consists of:

• Q � a �nite set of states;

• Σ � a �nite set of symbols, including t and ..

• s ∈ Q � an initial state;

• δ : (Q × Σ)→ (Q ∪ {acc, rej})× Σ× {L,R,S}
A transition function that speci�es, for each state and symbol a next
state (or accept acc or reject rej), a symbol to overwrite the current
symbol, and a direction for the tape head to move (L � left, R �
right, or S - stationary)

Anuj Dawar Complexity Theory

Con�gurations

A complete description of the con�guration of a machine can be given if
we know what state it is in, what are the contents of its tape, and what
is the position of its head. This can be summed up in a simple triple:

De�nition
A con�guration is a triple (q,w , u), where q ∈ Q and w , u ∈ Σ?

The intuition is that (q,w , u) represents a machine in state q with the
string wu on its tape, and the head pointing at the last symbol in w .

The con�guration of a machine completely determines the future
behaviour of the machine.

Anuj Dawar Complexity Theory

Computations

Given a machine M = (Q,Σ, s, δ) we say that a con�guration (q,w , u)
yields in one step (q′,w ′, u′), written

(q,w , u)→M (q′,w ′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w ′ = v and u′ = bu
or D = S and w ′ = vb and u′ = u
or D = R and w ′ = vbc and u′ = x , where u = cx . If u is empty,
then w ′ = vbt and u′ is empty.

Anuj Dawar Complexity Theory

Computations

The relation →?
M is the re�exive and transitive closure of →M .

A sequence of con�gurations c1, . . . , cn, where for each i , ci →M ci+1, is
called a computation of M.

The language L(M) ⊆ Σ? accepted by the machine M is the set of strings

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

A machine M is said to halt on input x if for some w and u, either
(s, ., x)→?

M (acc,w , u) or (s, ., x)→?
M (rej,w , u)

Anuj Dawar Complexity Theory

Decidability

A language L ⊆ Σ? is recursively enumerable if it is L(M) for some M.

A language L is decidable if it is L(M) for some machine M which halts
on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ? → Σ? is computable, if there is a machine M, such
that for all x , (s, ., x)→?

M (acc, .f (x), ε)

Anuj Dawar Complexity Theory

Example

Consider the machine with δ given by:

. 0 1 t

s s, .,R rej, 0,S rej, 1,S q,t,R
q rej, .,R q, 1,R q, 1,R q′, 0,R
q′ rej, .,R rej, 0,S q′, 1, L acc,t,S

This machine, when started in con�guration (s, .,t1n0) eventually halts
in con�guration (acc, . t 1n+10t, ε).

Anuj Dawar Complexity Theory

Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to
multi-tape machines. For instance a machine with k tapes is speci�ed by:

• Q, Σ, s; and

• δ : (Q × Σk)→ Q ∪ {acc, rej} × (Σ× {L,R,S})k

Similarly, a con�guration is of the form:

(q,w1, u1, . . . ,wk , uk)

Anuj Dawar Complexity Theory

Running Time

With any Turing machine M, we associate a function r : IN→ IN called
the running time of M.

r(n) is de�ned to be the largest value R such that there is a string x of
length n so that the computation of M starting with con�guration
(s, ., x) is of length R (i.e. has R successive con�gurations in it) and
ends with an accepting con�guration.

In short, r(n) is the length of the longest accepting computation of M on
an input of length n.

Anuj Dawar Complexity Theory

Complexity

For any function f : IN→ IN, we say that a language L is in TIME(f) if
there is a machine M = (Q,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f).

Similarly, we de�ne SPACE(f) to be the languages accepted by a
machine which uses O(f (n)) tape cells on inputs of length n.

In de�ning space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells on
the work tape towards the complexity.

Anuj Dawar Complexity Theory

Decidability and Complexity

For every decidable language L, there is a computable function f such
that

L ∈ TIME(f)

If L is a semi-decidable (but not decidable) language accepted by M,
then there is no computable function f such that every accepting
computation of M, on input of length n is of length at most f (n).

Anuj Dawar Complexity Theory

Nondeterminism

If, in the de�nition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a
nondeterministic Turing machine.

δ ⊆ (Q × Σ)× (Q ∪ {acc, rej} × Σ× {R, L,S}).

The yields relation →M is also no longer functional.

We still de�ne the language accepted by M by:

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as
well as rejecting states.

Anuj Dawar Complexity Theory

Computation Trees

With a nondeterministic machine, each con�guration gives rise to a tree
of successive con�gurations.

(s, ., x)

(q0, u0,w0) (q1, u1,w1) (q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

Anuj Dawar Complexity Theory

Complexity Classes

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or
a nondeterministic TM, or a parallel Random Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to bound
the amount of resource we can use.

Anuj Dawar Complexity Theory

Polynomial Bounds

By making the bounds broad enough, we can make our de�nitions fairly
independent of the model of computation.

The collection of languages recognised in polynomial time is the
same whether we consider Turing machines, register machines,
or any other deterministic model of computation.

The collection of languages recognised in linear time, on the
other hand, is di�erent on a one-tape and a two-tape Turing
machine.

We can say that being recognisable in polynomial time is a property of
the language, while being recognisable in linear time is sensitive to the
model of computation.

Anuj Dawar Complexity Theory

Polynomial Time

P =
∞⋃
k=1

TIME(nk)

The class of languages decidable in polynomial time.
The complexity class P plays an important role in our theory.

• It is robust, as explained.

• It serves as our formal de�nition of what is feasibly computable

One could argue whether an algorithm running in time θ(n100) is feasible,
but it will eventually run faster than one that takes time θ(2n).
Making the distinction between polynomial and exponential results in a
useful and elegant theory.

Anuj Dawar Complexity Theory

Example: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E)
and two nodes a, b ∈ V , to determine whether there is a path from a to
b in G .

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to
{a};

2. while S is not empty, choose node i in S : remove i from S and for
all j such that there is an edge (i , j) and j is unmarked, mark j and
add j to S ;

3. if b is marked, accept else reject.

Anuj Dawar Complexity Theory

Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be re�ned for an
implementation on a Turing machine, but it is easy enough to show that:

Reachability ∈ P

To formally de�ne Reachability as a language, we would have to also
choose a way of representing the input (V ,E , a, b) as a string.

Anuj Dawar Complexity Theory

Example: Euclid's Algorithm

Consider the decision problem (or language) RelPrime de�ned by:

{(x , y) | gcd(x , y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x , y).

2. Repeat until y = 0: x ← x mod y ; Swap x and y

3. If x = 1 then accept else reject.

Anuj Dawar Complexity Theory

Analysis

The number of repetitions at step 2 of the algorithm is at most O(log x).
why?

This implies that RelPrime is in P.

If the algorithm took θ(x) steps to terminate, it would not be a
polynomial time algorithm, as x is not polynomial in the length of the
input.

Anuj Dawar Complexity Theory

Primality

Consider the decision problem (or language) Prime de�ned by:

{x | x is prime}

The obvious algorithm:

For all y with 1 < y ≤
√
x check whether y |x .

requires Ω(
√
x) steps and is therefore not polynomial in the length of the

input.

Is Prime ∈ P?

Anuj Dawar Complexity Theory

Boolean Expressions

Boolean expressions are built up from an in�nite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ) and
(φ ∨ ψ).

Anuj Dawar Complexity Theory

Evaluation

If an expression contains no variables, then it can be evaluated to either
true or false.

Otherwise, it can be evaluated, given a truth assignment to its variables.

Examples:
(true ∨ false) ∧ (¬false)
(x1 ∨ false) ∧ ((¬x1) ∨ x2)
(x1 ∨ false) ∧ (¬x1)
(x1 ∨ (¬x1)) ∧ true

Anuj Dawar Complexity Theory

Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean
expression without variables of length n will determine, in time O(n2)
whether the expression evaluates to true.

The algorithm works by scanning the input, rewriting formulas according
to the following rules:

Anuj Dawar Complexity Theory

Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true

Anuj Dawar Complexity Theory

Analysis

Each scan of the input (O(n) steps) must �nd at least one subexpression
matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the formula.
Thus, there are at most O(n) scans required.

The algorithm works in O(n2) steps.

Anuj Dawar Complexity Theory

Satis�ability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which
would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT
of satis�able expressions.
This can be decided by a deterministic Turing machine in time O(n22n).
An expression of length n can contain at most n variables.
For each of the 2n possible truth assignments to these variables, we check
whether it results in a Boolean expression that evaluates to true.
Is SAT ∈ P?

Anuj Dawar Complexity Theory

Circuits

A circuit is a directed graph G = (V ,E), with V = {1, . . . , n} together
with a labeling: l : V → {true, false,∧,∨,¬}, satisfying:

• If there is an edge (i , j), then i < j ;

• Every node in V has indegree at most 2.

• A node v has
indegree 0 i� l(v) ∈ {true, false};
indegree 1 i� l(v) = ¬;
indegree 2 i� l(v) ∈ {∨,∧}

The value of the expression is given by the value at node n.

Anuj Dawar Complexity Theory

CVP

A circuit is a more compact way of representing a Boolean expression.

Identical subexpressions need not be repeated.

CVP - the circuit value problem is, given a circuit, determine the value of
the result node n.

CVP is solvable in polynomial time, by the algorithm which examines the
nodes in increasing order, assigning a value true or false to each node.

Anuj Dawar Complexity Theory

Composites

Consider the decision problem (or language) Composite de�ned by:

{x | x is not prime}

This is the complement of the language Prime.

Is Composite ∈ P?

Clearly, the answer is yes if, and only if, Prime ∈ P.

Anuj Dawar Complexity Theory

Hamiltonian Graphs

Given a graph G = (V ,E), a Hamiltonian cycle in G is a path in the
graph, starting and ending at the same node, such that every node in V
appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is HAM ∈ P?

Anuj Dawar Complexity Theory

Examples

The �rst of these graphs is not Hamiltonian, but the second one is.

Anuj Dawar Complexity Theory

Graph Isomorphism

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), is there a bijection

ι : V1 → V2

such that for every u, v ∈ V1,

(u, v) ∈ E1 if, and only if, (ι(u), ι(v)) ∈ E2.

Is Graph Isomorphism ∈ P?

Anuj Dawar Complexity Theory

Polynomial Veri�cation

The problems Composite, SAT, HAM and Graph Isomorphism have
something in common.

In each case, there is a search space of possible solutions.

the numbers less than x ; truth assignments to the variables of
φ; lists of the vertices of G ; a bijection between V1 and V2.

The size of the search is exponential in the length of the input.

Given a potential solution in the search space, it is easy to check whether
or not it is a solution.

Anuj Dawar Complexity Theory

Veri�ers

A veri�er V for a language L is an algorithm such that

L = {x | (x , c) is accepted by V for some c}

If V runs in time polynomial in the length of x , then we say that

L is polynomially veri�able.

Many natural examples arise, whenever we have to construct a solution
to some design constraints or speci�cations.

Anuj Dawar Complexity Theory

Nondeterminism

If, in the de�nition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a
nondeterministic Turing machine.

δ ⊆ (Q × Σ)× (Q ∪ {acc, rej} × Σ× {R, L,S}).

The yields relation →M is also no longer functional.

We still de�ne the language accepted by M by:

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as
well as rejecting states.

Anuj Dawar Complexity Theory

Computation Trees

With a nondeterministic machine, each con�guration gives rise to a tree
of successive con�gurations.

(s, ., x)

(q0, u0,w0) (q1, u1,w1) (q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

Anuj Dawar Complexity Theory

Nondeterministic Complexity Classes

We have already de�ned TIME(f) and SPACE(f).

NTIME(f) is de�ned as the class of those languages L which are
accepted by a nondeterministic Turing machine M, such that for every
x ∈ L, there is an accepting computation of M on x of length at most
f (n), where n is the length of x .

NP =
∞⋃
k=1

NTIME(nk)

Anuj Dawar Complexity Theory

Nondeterminism

(s, ., x)

(q0, u0,w0) (q1, u1,w1) (q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

For a language in NTIME(f), the height of the tree can be bounded by
f (n) when the input is of length n.

Anuj Dawar Complexity Theory

NP

A language L is polynomially veri�able if, and only if, it is in NP.

To prove this, suppose L is a language, which has a veri�er V , which
runs in time p(n).

The following describes a nondeterministic algorithm that accepts L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x , c)

Anuj Dawar Complexity Theory

NP

In the other direction, suppose M is a nondeterministic machine that
accepts a language L in time nk .

We de�ne the deterministic algorithm V which on input (x , c) simulates
M on input x .
At the i th nondeterministic choice point, V looks at the i th character in
c to decide which branch to follow.
If M accepts then V accepts, otherwise it rejects.

V is a polynomial veri�er for L.

Anuj Dawar Complexity Theory

Generate and Test

We can think of nondeterministic algorithms in the generate-and test
paradigm:

yes

no

generatex Vx verify

Where the generate component is nondeterministic and the verify
component is deterministic.

Anuj Dawar Complexity Theory

Reductions

Given two languages L1 ⊆ Σ?
1, and L2 ⊆ Σ?

2,

A reduction of L1 to L2 is a computable function

f : Σ?
1 → Σ?

2

such that for every string x ∈ Σ?
1,

f (x) ∈ L2 if, and only if, x ∈ L1

Anuj Dawar Complexity Theory

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1 is
polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2

Anuj Dawar Complexity Theory

Reductions 2

If L1 ≤P L2 we understand that L1 is no more di�cult to solve than L2,
at least as far as polynomial time computation is concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by �rst computing f , and then
using the polynomial time algorithm for L2.

Anuj Dawar Complexity Theory

Completeness

The usefulness of reductions is that they allow us to establish the relative
complexity of problems, even when we cannot prove absolute lower
bounds.

Cook (1972) �rst showed that there are problems in NP that are
maximally di�cult.

A language L is said to be NP-hard if for every language A ∈ NP, A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

Anuj Dawar Complexity Theory

SAT is NP-complete

Cook showed that the language SAT of satis�able Boolean expressions is
NP-complete.

To establish this, we need to show that for every language L in NP, there
is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

M = (Q,Σ, s, δ)

and a bound k such that a string x of length n is in L if, and only if, it is
accepted by M within nk steps.

Anuj Dawar Complexity Theory

Boolean Formula

We need to give, for each x ∈ Σ?, a Boolean expression f (x) which is
satis�able if, and only if, there is an accepting computation of M on
input x .

f (x) has the following variables:

Si,q for each i ≤ nk and q ∈ Q
Ti,j,σ for each i , j ≤ nk and σ ∈ Σ
Hi,j for each i , j ≤ nk

Anuj Dawar Complexity Theory

Intuitively, these variables are intended to mean:

• Si,q � the state of the machine at time i is q.

• Ti,j,σ � at time i , the symbol at position j of the tape is σ.

• Hi,j � at time i , the tape head is pointing at tape cell j .

We now have to see how to write the formula f (x), so that it enforces
these meanings.

Anuj Dawar Complexity Theory

Initial state is s and the head is initially at the beginning of the tape.

S1,s ∧ H1,1

The head is never in two places at once∧
i

∧
j

(Hi,j →
∧
j′ 6=j

(¬Hi,j′))

The machine is never in two states at once∧
q

∧
i

(Si,q →
∧
q′ 6=q

(¬Si,q′))

Each tape cell contains only one symbol∧
i

∧
j

∧
σ

(Ti,j,σ →
∧
σ′ 6=σ

(¬Ti,j,σ′))

Anuj Dawar Complexity Theory

The initial tape contents are x∧
j≤n

T1,j,xj ∧
∧
n<j

T1,j,t

The tape does not change except under the head∧
i

∧
j

∧
j′ 6=j

∧
σ

(Hi,j ∧ Ti,j′,σ)→ Ti+1,j′,σ

Each step is according to δ.∧
i

∧
j

∧
σ

∧
q

(Hi,j ∧ Si,q ∧ Ti,j,σ)

→
∨
∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′)

Anuj Dawar Complexity Theory

where ∆ is the set of all triples (q′, σ′,D) such that
((q, σ), (q′, σ′,D)) ∈ δ and

j ′ =

 j if D = S
j − 1 if D = L
j + 1 if D = R

Finally, the accepting state is reached∨
i

Si,acc

Anuj Dawar Complexity Theory

CNF

A Boolean expression is in conjunctive normal form if it is the conjunction
of a set of clauses, each of which is the disjunction of a set of literals,
each of these being either a variable or the negation of a variable.

For any Boolean expression φ, there is an equivalent expression ψ in
conjunctive normal form.

ψ can be exponentially longer than φ.

However, CNF-SAT, the collection of satis�able CNF expressions, is
NP-complete.

Anuj Dawar Complexity Theory

3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form and
each clause contains at most 3 literals.

3SAT is de�ned as the language consisting of those expressions in 3CNF
that are satis�able.

3SAT is NP-complete, as there is a polynomial time reduction from
CNF-SAT to 3SAT.

Anuj Dawar Complexity Theory

Composing Reductions

Polynomial time reductions are clearly closed under composition.
So, if L1 ≤P L2 and L2 ≤P L3, then we also have L1 ≤P L3.

If we show, for some problem A in NP that

SAT ≤P A

or
3SAT ≤P A

it follows that A is also NP-complete.

Anuj Dawar Complexity Theory

Independent Set

Given a graph G = (V ,E), a subset X ⊆ V of the vertices is said to be
an independent set, if there are no edges (u, v) for u, v ∈ X .

The natural algorithmic problem is, given a graph, �nd the largest
independent set.
To turn this optimisation problem into a decision problem, we de�ne IND
as:

The set of pairs (G ,K), where G is a graph, and K is an
integer, such that G contains an independent set with K or
more vertices.

IND is clearly in NP. We now show it is NP-complete.

Anuj Dawar Complexity Theory

Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression φ in 3CNF with m clauses is mapped by the
reduction to the pair (G ,m), where G is the graph obtained from φ as
follows:

G contains m triangles, one for each clause of φ, with each
node representing one of the literals in the clause.
Additionally, there is an edge between two nodes in di�erent
triangles if they represent literals where one is the negation of
the other.

Anuj Dawar Complexity Theory

Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

x1

x2
¬x3

¬x1

¬x2x3

Anuj Dawar Complexity Theory

Clique

Given a graph G = (V ,E), a subset X ⊆ V of the vertices is called a
clique, if for every u, v ∈ X , (u, v) is an edge.

As with IND, we can de�ne a decision problem:
CLIQUE is de�ned as:

The set of pairs (G ,K), where G is a graph, and K is an
integer, such that G contains a clique with K or more vertices.

Anuj Dawar Complexity Theory

Clique 2

CLIQUE is in NP by the algorithm which guesses a clique and then
veri�es it.

CLIQUE is NP-complete, since
IND ≤P CLIQUE
by the reduction that maps the pair (G ,K) to (Ḡ ,K), where Ḡ is the
complement graph of G .

Anuj Dawar Complexity Theory

k-Colourability

A graph G = (V ,E) is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E ,

χ(u) 6= χ(v)

This gives rise to a decision problem for each k .
2-colourability is in P.
For all k > 2, k-colourability is NP-complete.

Anuj Dawar Complexity Theory

3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to
3-Colourability.

For each variable x , we have two vertices x , x̄ which are connected in a
triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l1, l2 and l3 we have a
gadget.

Anuj Dawar Complexity Theory

Gadget

l1

l2

l3 b

With a further edge from a to b.

Anuj Dawar Complexity Theory

Hamiltonian Graphs

Recall the de�nition of HAM�the language of Hamiltonian graphs.

Given a graph G = (V ,E), a Hamiltonian cycle in G is a path in the
graph, starting and ending at the same node, such that every node in V
appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Anuj Dawar Complexity Theory

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM
Essentially, this involves coding up a Boolean expression as a graph, so
that every satisfying truth assignment to the expression corresponds to a
Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.

Anuj Dawar Complexity Theory

Travelling Salesman

Recall the travelling salesman problem

Given

• V � a set of nodes.

• c : V × V → IN � a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1∑
i=1

c(vi , vi+1)

is the smallest possible.

Anuj Dawar Complexity Theory

Travelling Salesman

As with other optimisation problems, we can make a decision problem
version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

(V , c : V × V → IN, t)

such that there is a tour of the set of vertices V , which under the cost
matrix c , has cost t or less.

Anuj Dawar Complexity Theory

Reduction

There is a simple reduction from HAM to TSP, mapping a graph (V ,E)
to the triple (V , c : V × V → IN, n), where

c(u, v) =

{
1 if (u, v) ∈ E
2 otherwise

and n is the size of V .

Anuj Dawar Complexity Theory

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be
NP-complete.

Literally hundreds of naturally arising problems have been proved
NP-complete, in areas involving network design, scheduling, optimisation,
data storage and retrieval, arti�cial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution
within constraints, and the most e�ective way appears to be an
exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose signi�cance
lies in that they have been used to prove a large number of other
problems NP-complete, through reductions.

Anuj Dawar Complexity Theory

3D Matching

The decision problem of 3D Matching is de�ned as:

Given three disjoint sets X , Y and Z , and a set of triples
M ⊆ X × Y × Z , does M contain a matching?
I.e. is there a subset M ′ ⊆ M, such that each element of X , Y
and Z appears in exactly one triple of M ′?

We can show that 3DM is NP-complete by a reduction from 3SAT.

Anuj Dawar Complexity Theory

Reduction

If a Boolean expression φ in 3CNF has n variables, and m clauses, we
construct for each variable v the following gadget.

zv1

zv2

zv3

zv4

xv1 yv1

z̄v1

z̄v2

yv2

xv2

yv3 xv3

yv4

xv4

z̄v3

z̄v4

Anuj Dawar Complexity Theory

In addition, for every clause c , we have two elements xc and yc .
If the literal v occurs in c , we include the triple

(xc , yc , zvc)

in M.

Similarly, if ¬v occurs in c , we include the triple

(xc , yc , z̄vc)

in M.
Finally, we include extra dummy elements in X and Y to make the
numbers match up.

Anuj Dawar Complexity Theory

Exact Set Covering

Two other well known problems are proved NP-complete by immediate
reduction from 3DM.

Exact Cover by 3-Sets is de�ned by:

Given a set U with 3n elements, and a collection
S = {S1, . . . ,Sm} of three-element subsets of U, is there a
sub-collection containing exactly n of these sets whose union is
all of U?

The reduction from 3DM simply takes U = X ∪ Y ∪ Z , and S to be the
collection of three-element subsets resulting from M.

Anuj Dawar Complexity Theory

Set Covering

More generally, we have the Set Covering problem:

Given a set U, a collection of S = {S1, . . . ,Sm} subsets of U
and an integer budget B, is there a collection of B sets in S
whose union is U?

Anuj Dawar Complexity Theory

Knapsack

KNAPSACK is a problem which generalises many natural scheduling and
optimisation problems, and through reductions has been used to show
many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value
vi and weight wi .
We are also given a maximum total weight W , and a minimum total
value V .

Can we select a subset of the items whose total weight does not
exceed W , and whose total value exceeds V ?

Anuj Dawar Complexity Theory

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the
problem of Exact Cover by 3-Sets.

Given a set U = {1, . . . , 3n} and a collection of 3-element subsets of U,
S = {S1, . . . ,Sm}.
We map this to an instance of KNAPSACK with m elements each
corresponding to one of the Si , and having weight and value∑

j∈Si

(m + 1)j−1

and set the target weight and value both to

3n−1∑
j=0

(m + 1)j

Anuj Dawar Complexity Theory

Scheduling

Some examples of the kinds of scheduling tasks that have been proved
NP-complete include:
Timetable Design

Given a set H of work periods, a set W of workers each with an
associated subset of H (available periods), a set T of tasks and
an assignment r : W × T → IN of required work, is there a
mapping f : W × T × H → {0, 1} which completes all tasks?

Anuj Dawar Complexity Theory

Scheduling

Sequencing with Deadlines

Given a set T of tasks and for each task a length l ∈ IN, a
release time r ∈ IN and a deadline d ∈ IN, is there a work
schedule which completes each task between its release time
and its deadline?

Job Scheduling

Given a set T of tasks, a number m ∈ IN of processors a length
l ∈ IN for each task, and an overall deadline D ∈ IN, is there a
multi-processor schedule which completes all tasks by the
deadline?

Anuj Dawar Complexity Theory

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable,
what can one do?

• It's a single instance, does asymptotic complexity matter?

• What's the critical size? Is scalability important?

• Are there guaranteed restrictions on the input? Will a special
purpose algorithm su�ce?

• Will an approximate solution su�ce? Are performance guarantees
required?

• Are there useful heuristics that can constrain a search? Ways of
ordering choices to control backtracking?

Anuj Dawar Complexity Theory

Validity

We de�ne VAL�the set of valid Boolean expressions�to be those
Boolean expressions for which every assignment of truth values to
variables yields an expression equivalent to true.

φ ∈ VAL ⇔ ¬φ 6∈ SAT

By an exhaustive search algorithm similar to the one for SAT, VAL is in
TIME(n22n).

Is VAL ∈ NP?

Anuj Dawar Complexity Theory

Validity

VAL = {φ | φ 6∈ VAL}�the complement of VAL is in NP.

Guess a falsifying truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether every truth assignment results
in true�a requirement that does not sit as well with the de�nition of
acceptance by a nondeterministic machine.

Anuj Dawar Complexity Theory

Complementation

If we interchange accepting and rejecting states in a deterministic
machine that accepts the language L, we get one that accepts L.

If a language L ∈ P, then also L ∈ P.

Complexity classes de�ned in terms of nondeterministic machine models
are not necessarily closed under complementation of languages.

De�ne,
co-NP � the languages whose complements are in NP.

Anuj Dawar Complexity Theory

Succinct Certi�cates

The complexity class NP can be characterised as the collection of
languages of the form:

L = {x | ∃yR(x , y)}

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a polynomial p such
that if R(x , y) and the length of x is n, then the length of y is no
more than p(n).

Anuj Dawar Complexity Theory

Succinct Certi�cates

y is a certi�cate for the membership of x in L.

Example: If L is SAT, then for a satis�able expression x , a certi�cate
would be a satisfying truth assignment.

Anuj Dawar Complexity Theory

co-NP

As co-NP is the collection of complements of languages in NP, and P is
closed under complementation, co-NP can also be characterised as the
collection of languages of the form:

L = {x | ∀y |y | < p(|x |)→ R ′(x , y)}

NP � the collection of languages with succinct certi�cates of membership.
co-NP � the collection of languages with succinct certi�cates of
disquali�cation.

Anuj Dawar Complexity Theory

NP co-NP

P

Any of the situations is consistent with our present state of knowledge:

• P = NP = co-NP

• P = NP ∩ co-NP 6= NP 6= co-NP

• P 6= NP ∩ co-NP = NP = co-NP

• P 6= NP ∩ co-NP 6= NP 6= co-NP

Anuj Dawar Complexity Theory

co-NP-complete

VAL � the collection of Boolean expressions that are valid is
co-NP-complete.
Any language L that is the complement of an NP-complete language is
co-NP-complete.
Any reduction of a language L1 to L2 is also a reduction of L̄1�the
complement of L1�to L̄2�the complement of L2.
There is an easy reduction from the complement of SAT to VAL, namely
the map that takes an expression to its negation.

VAL ∈ P⇒ P = NP = co-NP

VAL ∈ NP⇒ NP = co-NP

Anuj Dawar Complexity Theory

Prime Numbers

Consider the decision problem PRIME:

Given a number x , is it prime?

This problem is in co-NP.

∀y(y < x → (y = 1 ∨ ¬(div(y , x))))

Note again, the algorithm that checks for all numbers up to
√
n

whether any of them divides n, is not polynomial, as
√
n is not

polynomial in the size of the input string, which is log n.

Anuj Dawar Complexity Theory

Primality

Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct
certi�cates of primality based on:

A number p > 2 is prime if, and only if, there is a number r ,

1 < r < p, such that rp−1 = 1 mod p and r
p−1
q 6= 1 mod p for

all prime divisors q of p − 1.

Anuj Dawar Complexity Theory

Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

(x − a)p ≡ (xp − a) (mod p)

if, and only if, p is a prime.

Checking this equivalence would take to long. Instead, the equivalence is
checked modulo a polynomial x r − 1, for �suitable� r .

The existence of suitable small r relies on deep results in number theory.

Anuj Dawar Complexity Theory

Factors

Consider the language Factor

{(x , k) | x has a factor y with 1 < y < k}

Factor ∈ NP ∩ co-NP

Certi�cate of membership�a factor of x less than k .

Certi�cate of disquali�cation�the prime factorisation of x .

Anuj Dawar Complexity Theory

Graph Isomorphism

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), is there a bijection

ι : V1 → V2

such that for every u, v ∈ V1,

(u, v) ∈ E1 if, and only if, (ι(u), ι(v)) ∈ E2.

Anuj Dawar Complexity Theory

Graph Isomorphism

Graph Isomorphism is

• in NP

• not known to be in P

• not known to be in co-NP

• not known (or expected) to be NP-complete

• recently shown to be in quasi-polynomial time, i.e. in

TIME(n(log n)k)

for a constant k .

Anuj Dawar Complexity Theory

Optimisation

The Travelling Salesman Problem was originally conceived of as an
optimisation problem

to �nd a minimum cost tour.

We forced it into the mould of a decision problem � TSP � in order to �t
it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and IND.

Anuj Dawar Complexity Theory

This is still reasonable, as we are establishing the di�culty of the
problems.

A polynomial time solution to the optimisation version would give a
polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would allow a
polynomial time algorithm for �nding the optimal value, using binary
search, if necessary.

Anuj Dawar Complexity Theory

Function Problems

Still, there is something interesting to be said for function problems
arising from NP problems.
Suppose

L = {x | ∃yR(x , y)}

where R is a polynomially-balanced, polynomial time decidable relation.
A witness function for L is any function f such that:

• if x ∈ L, then f (x) = y for some y such that R(x , y);

• f (x) = �no� otherwise.

The class FNP is a collection of witness functions for languages in NP.

Anuj Dawar Complexity Theory

FNP and FP

A function which, for any given Boolean expression φ, gives a satisfying
truth assignment if φ is satis�able, and returns �no� otherwise, is a
witness function for SAT.
If any witness function for SAT is computable in polynomial time, then
P = NP.
If P = NP, then for every language in NP, some witness function is
computable in polynomial time, by a binary search algorithm.
Under a suitable de�nition of reduction, the witness functions for SAT
are FNP-complete.

Anuj Dawar Complexity Theory

Factorisation

The factorisation function maps a number n to its prime factorisation:

2k13k2 · · · pkmm .

This function is in FNP.
The corresponding decision problem (for which it is a witness function) is
trivial - it is the set of all numbers.

Still, it is not known whether this function can be computed in
polynomial time.

Anuj Dawar Complexity Theory

Cryptography

Alice Bob

Eve

Alice wishes to communicate with Bob without Eve eavesdropping.

Anuj Dawar Complexity Theory

Private Key

In a private key system, there are two secret keys
e � the encryption key
d � the decryption key
and two functions D and E such that:

for any x ,
D(E (x , e), d) = x

For instance, taking d = e and both D and E as exclusive or, we have
the one time pad:

(x ⊕ e)⊕ e = x

Anuj Dawar Complexity Theory

One Time Pad

The one time pad is provably secure, in that the only way Eve can
decode a message is by knowing the key.

If the original message x and the encrypted message y are known, then
so is the key:

e = x ⊕ y

Anuj Dawar Complexity Theory

Public Key

In public key cryptography, the encryption key e is public, and the
decryption key d is private.
We still have,

for any x ,
D(E (x , e), d) = x

If E is polynomial time computable (and it must be if communication is
not to be painfully slow), then the function that takes y = E (x , e) to x
(without knowing d), must be in FNP.

Thus, public key cryptography is not provably secure in the way that the
one time pad is. It relies on the existence of functions in FNP− FP.

Anuj Dawar Complexity Theory

One Way Functions

A function f is called a one way function if it satis�es the following
conditions:

1. f is one-to-one.

2. for each x , |x |1/k ≤ |f (x)| ≤ |x |k for some k .

3. f ∈ FP.

4. f −1 6∈ FP.

We cannot hope to prove the existence of one-way functions without at
the same time proving P 6= NP.
It is strongly believed that the RSA function:

f (x , e, p, q) = (xe mod pq, pq, e)

is a one-way function.

Anuj Dawar Complexity Theory

UP

Though one cannot hope to prove that the RSA function is one-way
without separating P and NP, we might hope to make it as secure as a
proof of NP-completeness.

De�nition
A nondeterministic machine is unambiguous if, for any input x , there is
at most one accepting computation of the machine.
UP is the class of languages accepted by unambiguous machines in
polynomial time.

Anuj Dawar Complexity Theory

UP

Equivalently, UP is the class of languages of the form

{x | ∃yR(x , y)}

Where R is polynomial time computable, polynomially balanced, and for
each x , there is at most one y such that R(x , y).

Anuj Dawar Complexity Theory

UP One-way Functions

We have
P ⊆ UP ⊆ NP

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist if, and only if, P 6= UP.

Anuj Dawar Complexity Theory

One-Way Functions Imply P 6= UP

Suppose f is a one-way function.

De�ne the language Lf by

Lf = {(x , y) | ∃z(z ≤ x and f (z) = y)}.

We can show that Lf is in UP but not in P.

Anuj Dawar Complexity Theory

P 6= UP Implies One-Way Functions Exist

Suppose that L is a language that is in UP but not in P. Let U be an
unambiguous machine that accepts L.

De�ne the function fU by

if x is a string that encodes an accepting computation of U,
then fU(x) = 1y where y is the input string accepted by this
computation.
fU(x) = 0x otherwise.

We can prove that fU is a one-way function.

Anuj Dawar Complexity Theory

Space Complexity

We've already seen the de�nition SPACE(f): the languages accepted by
a machine which uses O(f (n)) tape cells on inputs of length n. Counting
only work space.

NSPACE(f) is the class of languages accepted by a nondeterministic
Turing machine using at most O(f (n)) work space.

As we are only counting work space, it makes sense to consider bounding
functions f that are less than linear.

Anuj Dawar Complexity Theory

Classes

L = SPACE(log n)

NL = NSPACE(log n)

PSPACE =
⋃∞

k=1 SPACE(nk)
The class of languages decidable in polynomial space.

NPSPACE =
⋃∞

k=1 NSPACE(nk)

Also, de�ne:

co-NL � the languages whose complements are in NL.

co-NPSPACE � the languages whose complements are in NPSPACE.

Anuj Dawar Complexity Theory

Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃∞

k=1 TIME(2n
k

)

Moreover,
L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE

Anuj Dawar Complexity Theory

Constructible Functions

A complexity class such as TIME(f) can be very unnatural, if f is.
We restrict our bounding functions f to be proper functions:

De�nition
A function f : IN→ IN is constructible if:

• f is non-decreasing, i.e. f (n + 1) ≥ f (n) for all n; and

• there is a deterministic machine M which, on any input of length n,
replaces the input with the string 0f (n), and M runs in time
O(n + f (n)) and uses O(f (n)) work space.

Anuj Dawar Complexity Theory

Examples

All of the following functions are constructible:

• dlog ne;
• n2;

• n;

• 2n.

If f and g are constructible functions, then so are
f + g , f · g , 2f and f (g) (this last, provided that f (n) > n).

Anuj Dawar Complexity Theory

Using Constructible Functions

NTIME(f) can be de�ned as the class of those languages L accepted by
a nondeterministic Turing machine M, such that for every x ∈ L, there is
an accepting computation of M on x of length at most O(f (n)).

If f is a constructible function then any language in NTIME(f) is
accepted by a machine for which all computations are of length at most
O(f (n)).

Also, given a Turing machine M and a constructible function f , we can
de�ne a machine that simulates M for f (n) steps.

Anuj Dawar Complexity Theory

Establishing Inclusions

To establish the known inclusions between the main complexity classes,
we prove the following, for any constructible f .

• SPACE(f (n)) ⊆ NSPACE(f (n));

• TIME(f (n)) ⊆ NTIME(f (n));

• NTIME(f (n)) ⊆ SPACE(f (n));

• NSPACE(f (n)) ⊆ TIME(k log n+f (n));

The �rst two are straightforward from de�nitions.
The third is an easy simulation.
The last requires some more work.

Anuj Dawar Complexity Theory

Reachability

Recall the Reachability problem: given a directed graph G = (V ,E) and
two nodes a, b ∈ V , determine whether there is a path from a to b in G .

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to
{a};

2. while S is not empty, choose node i in S : remove i from S and for
all j such that there is an edge (i , j) and j is unmarked, mark j and
add j to S ;

3. if b is marked, accept else reject.

Anuj Dawar Complexity Theory

We can use the O(n2) algorithm for Reachability to show that:
NSPACE(f (n)) ⊆ TIME(k log n+f (n))
for some constant k .

Let M be a nondeterministic machine working in space bounds f (n).
For any input x of length n, there is a constant c (depending on the
number of states and alphabet of M) such that the total number of
possible con�gurations of M within space bounds f (n) is bounded by
n · c f (n).

Here, c f (n) represents the number of di�erent possible contents
of the work space, and n di�erent head positions on the input.

Anuj Dawar Complexity Theory

Con�guration Graph

De�ne the con�guration graph of M, x to be the graph whose nodes are
the possible con�gurations, and there is an edge from i to j if, and only
if, i →M j .

Then, M accepts x if, and only if, some accepting con�guration is
reachable from the starting con�guration (s, ., x , ., ε) in the
con�guration graph of M, x .

Anuj Dawar Complexity Theory

Using the O(n2) algorithm for Reachability, we get that L(M)�the
language accepted by M�can be decided by a deterministic machine
operating in time

c ′(nc f (n))2 ∼ c ′c2(log n+f (n)) ∼ k(log n+f (n))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.

Anuj Dawar Complexity Theory

NL Reachability

We can construct an algorithm to show that the Reachability problem is
in NL:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

2.1 if i = b then accept, else
guess an index j (log n bits) and write it on the work space.

2.2 if (i , j) is not an edge, reject, else replace i by j and return to (2).

Anuj Dawar Complexity Theory

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by
other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic
algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether there
is a path from a to b of length at most i (for i a power of 2):

Anuj Dawar Complexity Theory

O((log n)2) space Reachability algorithm:

Path(a, b, i)
if i = 1 and a 6= b and (a, b) is not an edge reject
else if (a, b) is an edge or a = b accept
else, for each node x , check:

1. is there a path a− x of length i/2; and

2. is there a path x − b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits of
information kept at each stage is 3 log n.

Anuj Dawar Complexity Theory

Savitch's Theorem

The space e�cient algorithm for reachability used on the con�guration
graph of a nondeterministic machine shows:

NSPACE(f) ⊆ SPACE(f 2)

for f (n) ≥ log n.

This yields
PSPACE = NPSPACE = co-NPSPACE.

Anuj Dawar Complexity Theory

Complementation

A still more clever algorithm for Reachability has been used to show that
nondeterministic space classes are closed under complementation:

If f (n) ≥ log n, then

NSPACE(f) = co-NSPACE(f)

In particular
NL = co-NL.

Anuj Dawar Complexity Theory

Logarithmic Space Reductions

We write
A ≤L B

if there is a reduction f of A to B that is computable by a deterministic
Turing machine using O(log n) workspace (with a read-only input tape
and write-only output tape).

Note: We can compose ≤L reductions. So,

if A ≤L B and B ≤L C then A ≤L C

Anuj Dawar Complexity Theory

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of
NP-completeness, we can see that SAT and the various other
NP-complete problems are actually complete under ≤L reductions.

Thus, if SAT ≤L A for some problem A in L then not only P = NP but
also L = NP.

Anuj Dawar Complexity Theory

P-complete Problems

It makes little sense to talk of complete problems for the class P with
respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to logarithmic
space reductions ≤L.
One example is CVP�the circuit value problem.

That is, for every language A in P,

A ≤L CVP

• If CVP ∈ L then L = P.

• If CVP ∈ NL then NL = P.

Anuj Dawar Complexity Theory

Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete.

For any language A ∈ NL, we have A ≤L Reachability

L = NL if, and only if, Reachability ∈ L

Note: it is known that the reachability problem for undirected graphs is
in L.

Anuj Dawar Complexity Theory

Provable Intractability

Our aim now is to show that there are languages (or, equivalently,
decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f , there is a
language that is not in TIME(f).

The proof is based on the diagonal method, as in the proof of the
undecidability of the halting problem.

Anuj Dawar Complexity Theory

Time Hierarchy Theorem

For any constructible function f , with f (n) ≥ n, de�ne the f -bounded
halting language to be:

Hf = {[M], x | M accepts x in f (|x |) steps}

where [M] is a description of M in some �xed encoding scheme.
Then, we can show
Hf ∈ TIME(f (n)2) and Hf 6∈ TIME(f (bn/2c))

Time Hierarchy Theorem
For any constructible function f (n) ≥ n, TIME(f (n)) is properly
contained in TIME(f (2n + 1)2).

Anuj Dawar Complexity Theory

Strong Hierarchy Theorems

For any constructible function f (n) ≥ n, TIME(f (n)) is properly
contained in TIME(f (n)(log f (n))).

Space Hierarchy Theorem
For any pair of constructible functions f and g , with f = O(g) and
g 6= O(f), there is a language in SPACE(g(n)) that is not in
SPACE(f (n)).

Similar results can be established for nondeterministic time and space
classes.

Anuj Dawar Complexity Theory

Consequences

• For each k , TIME(nk) 6= P.

• P 6= EXP.

• L 6= PSPACE.

• Any language that is EXP-complete is not in P.

• There are no problems in P that are complete under linear time
reductions.

Anuj Dawar Complexity Theory

Descriptive Complexity

Descriptive Complexity is an attempt to study the complexity of problems
and classify them, not on the basis of how di�cult it is to compute
solutions, but on the basis of how di�cult it is to describe the problem.

This gives an alternative way to study complexity, independent of
particular machine models.

Based on de�nability in logic.

Anuj Dawar Complexity Theory

Graph Properties

As an example, consider the following three decision problems on graphs.

1. Given a graph G = (V ,E) does it contain a triangle?

2. Given a directed graph G = (V ,E) and two of its vertices a, b ∈ V ,
does G contain a path from a to b?

3. Given a graph G = (V ,E) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever
(u, v) ∈ E , χ(u) 6= χ(v).

Anuj Dawar Complexity Theory

Graph Properties

1. Checking if G contains a triangle can be solved in polynomial time
and logarithmic space.

2. Checking if G contains a path from a to b can be done in polynomial
time.
Can it be done in logarithmic space?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in exponential time and
polynomial space.
Can it be done in polynomial time?

Unlikely. It is NP-complete.

Anuj Dawar Complexity Theory

Logical De�nability

In what kind of formal language can these decision problems be speci�ed
or de�ned?

The graph G = (V ,E) contains a triangle.

∃x , y , z ∈ V (x 6= y ∧ y 6= z ∧ x 6= z ∧ E (x , y) ∧ E (x , z) ∧ E (y , z))

The other two properties are provably not de�nable with only �rst-order
quanti�cation over vertices.

Anuj Dawar Complexity Theory

First-Order Logic

Consider �rst-order predicate logic.

A collection of variables x , y , . . ., and formulas:

E (x , y) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ

Any property of graphs that is expressible in �rst-order logic is in L.

The problem of deciding whether G |= φ for a �rst-order φ is in time
O(lnm) and O(m log n) space.

where, l is the length of φ and n the order of G and m is the nesting
depth of quanti�ers in φ.

Anuj Dawar Complexity Theory

Complexity of First-Order Logic

The straightforward algorithm proceeds recursively on the structure of φ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If φ ≡ ∃x ψ then for each v in G check whether

(G , x 7→ v) |= ψ.

Anuj Dawar Complexity Theory

Second-Order Quanti�ers

3-Colourability and Reachability can be de�ned with quanti�cation over
sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V
∀x(Rx ∨ Bx ∨ Gx)∧
∀x(¬(Rx ∧ Bx) ∧ ¬(Bx ∧ Gx) ∧ ¬(Rx ∧ Gx))∧
∀x∀y(Exy → (¬(Rx ∧ Ry)∧

¬(Bx ∧ By)∧
¬(Gx ∧ Gy)))

∀S ⊆ V (a ∈ S ∧ ∀x∀y((x ∈ S ∧ E (x , y))→ y ∈ S)→ b ∈ S)

Anuj Dawar Complexity Theory

Existential Second-Order Logic

Second-order logic is obtained by adding to the de�ning rules of
�rst-order logic two further clauses:

atomic formulae � X (t1, . . . , ta), where X is a second-order
variable

second-order quanti�ers � ∃Xφ, ∀Xφ

Existential Second-Order Logic (ESO) consists of formulas of the form

∃X1 · · · ∃Xkφ

where φ is �rst-order

Anuj Dawar Complexity Theory

Fagin's Theorem

Theorem (Fagin)
A class of graphs is de�nable by a formula of existential second-order
logic if, and only if, it is decidable by a nondeterminisitic machine
running in polynomial time.

ESO = NP

One direction is easy: Given G and ∃X1 . . . ∃Xkφ.

a nondeterministic machine can guess an interpretation for
X1, . . . ,Xk and then verify φ.

The other direction requires a proof similar to Cook's theorem.

Anuj Dawar Complexity Theory

A Logic for P?

Is there a logic, intermediate between �rst and second-order logic that
expresses exactly graph properties in P?

This is an open question, still the subject of active research.

Anuj Dawar Complexity Theory

The End

Please provide feedback, using the link sent to you by e-mail.

Anuj Dawar Complexity Theory

